Cole Pandya Btech451 End of Year Report 1506492

PICCA - An image processing application

for mobile devices

By

Cole Pandya
1506492

Cpan040@aucklanduni.ac.nz

mailto:Cpan040@aucklanduni.ac.nz

Cole Pandya Btech451 End of Year Report 1506492

Abstract

On some occasions, a user using a camera to take a picture does not have ideal conditions
to ensure optimal quality of the picture and providing a way to enhance the images would be
time efficient and cost effective. Even though there is a vast amount of “image-processing”
applications available to download, majority of them only consist of artistic effects such as
sepia or black and white etc but the essence of image restoration and enhancement is lost.
To solve this problem, | have developed Picca, which is a free image processing application
for all Android devices with a screen size of 5” or more and consists of more than 20 filters
that are not widely available in image processing application. If the users do not wish to
capture an image from the camera, they can also load an image from the device library
which are displayed as thumbnails in a grid layout and then apply filters. A bitmap is used to
the store an image in the application and the bitmap configuration used throughout the
application is called ARGB. Each pixel value of the image contains colour information and in
the ARGB bitmap configuration, the channel sample is defined by 8 bits, and are arranged in
memory in such manner that a single 32-bit unsigned integer has the Alpha sample in the
highest 8 bits, followed by the Red sample, Green sample and the Blue sample in the lowest
8 bits. Some of the filters are designed using the convolution matrix to promote reusability
and flexibility of the code. Filters like “Sharpen” must be used after an image is being
smoothened by “Gaussian blur’ so that the noise does not get highlighted. The application
promotes multiple filter application on one image and this allows users to have many
permutations of the filters which result in many restoration and enhancement effects. To
support decision making for selection of filters, the application consists of a RGB histogram
feature that displays separate histograms of each colour channel to show the spread of
intensities. The application solves the issue of image restoration and image enhancement for

Android devices.

Cole Pandya Btech451 End of Year Report 1506492

Table of Contents

Y oS 1 =T od PP P PP PP PPPPPPPPPPPPPPPN 2
Table Of CONTENTS ... 3
el oo 1U o] 4 o] o HUR PP PP P PP PPPPPPPPPPPPPPPP 6
REIALEA WOTK ..ottt ettt ettt ettt et ettt e et e e e e e e eeeneeneeneees 7
Research on filters and their USE: it 9
Image Equalization (Histogram Equalization) ..., 9
V1= o =T g T S 10
Mean or Average filter.........ooo i 11
CONTrast AGJUSTMENToviiiiiiiiiiiiiiie ettt ettt e et e e e ettt e e e e e e e e e e e eeeeeeeeenees 12

LT T8 ST T T 11 = 13
Edge deteCtioN........cooiiiiiiii 14
HSV Colour space filters — Hue, Saturation and Brightness............ccccccvvvvviiiiiiiiiennnnnne. 15

(0707 0)Y 70T 1V 11T Y o 11 (= P 16
0T | = 1Y SRR 17

o 1T 0 [=T = 17

LT oY= ox= 1L 17
Horizontal and vertical edge detectionciiiii i 18
MESSAJE ON IMAGE . .eeiii it e e e e e e e e e e e e e e e e ab e e eeaaan s 18
MOACOIOUI RGB.....coiiiiiii e e e 18
RGB HiStOgrams fEAUMEcce i e e e e e s 19
ONEE FILEIS ..ot e e 20

L o L=Tod @ AT YT T PP 21
ProjeCt REQUITEIMENTSvuuiii i e e e e e e e e e e e 22
ANdroid APP DeVEIOPMENT ... e a e e eaaaaa 24
ANAIOid ArCNITECIUTE . ..eeiiii e 24
LINUX KBINEL. ..ttt e e e e e e e e e 25

] o =T [TP PPP PP PPPPPPPPPPPI 25
APPHCAtioN FramMEWOIK.........uuiiii e e e e e e e e e r e 25

F Y o] o] Tor= 11 o] o 1= PPN 26
EClipse ANAroid SDKo e 27
AVD and the EMUIALOTueiiii e 28
A test user input program using EMulator ... 29
Balsamiqg MOCK-UP TOO ... 30
TS 1L PP 30

Cole Pandya Btech451 End of Year Report 1506492

Mock-ups using Balsamiq fOr PICCA: ... 31
Revised PIiCCA MOCK-UPS........coiiiiiiiiiiiiii e 32
Final MOCK-UPS fOr PICCA........cciiiiiiiiiiiiii e 33

INtrOdUCTION 1O BItMAPS ... 36
WAL IS @ BIlMIAD 2 e 36
Some of the common types Of DItMAPS:cvvviiiiiiiiiiiiiiiiiiiieeeeeeee e 36
Bitmap RESOIULION ..o 38

Picca programming WOTKooo i ettt eeeees e snsnennennee 39
1. AndroidManifeSt.XMIoooiiiiiii 39
Introduction to Linear Layout, TextFields and BUttONS............ccooevvvveviiiiiiii e, 41

Custom buttons for my appliCation ... 43
Background_mMenuU.XmI ... 43
Items in my Drawables-hdpi/mdpi/Xhdpi fOlAErs ... 43
button_blue_red_tranSIuSCeNt.XMIooiiiiiiiiiiiiiiiiiiiiiiiieeeeeee et 44
button_white_red_transSIuSCeNt. XMloouiiiiiiiiiiiiiiiiiiiiiiiiiiiieeee e 44
(o TUYu o] TN 0 =T U0] S 45
BULtON_MENU_dONE.XMI... ..o e e e e 45

HOMESCIEEN LAY OUL .uiiiiiiiiii ettt e e e e et s e e e e e e e e e eanns 45
= o (1YY =V 1041 LS 45

CAMEIA SCIEEN ...ttt e e 50
F e AV VA o= Y0 0 1= = U0 | SRR 50

FN o] o] YA = G Yol = T= o [USPPR 51
ACtiVity _edit_PICTUIES. XIMI....uuii i e e e e e e e e e e e eeaaane 51
Y (] 1o T34 1 11 P 54
EditPICtUrESACHVILY. JAVA ..uvuiii e e e e e e e e s 57

Different types of filters - Filter.java. ... 64
Brightness Filter - BrightnesSSINCrease.jaVvacceevveeeiiiiiiiiiiiiieeeeeeeee e 65
Modifying Contrast - ContrastAdjUSE.JaVAuiiiiiiiiiiiiicicc e 67
Linear Stretching - ContrastStretch.java..........cccoooovi i, 69
Convert to Grayscale - GraySCale.Javacccceeiieeiiiiiiiiiiici e 70
Histogram Equalization Filter - HistogramEqualization.javacccceeeeieiiiiiiiinnnnnnn. 71
Drawing histogram using View - DrawHistograms.javacccceevvvviiiieeeeeeeeeviinnennn. 75
Previewing RGB histograms - PrevieW.Javacoovviiiiiiiiiiieceeeec e 78
Median Filter - MedianFilter.JaVacooi i 80
Camera Image flipping - FlipImage.java.........ccooo oo 82
Tinting Image - TINtINGIMAQE.JAVAcccuuiieeiiie e e e e e e e e aaanas 83

Cole Pandya Btech451 End of Year Report 1506492

Writing message on the image - MessageOnImage.java ... 83
‘Inverting’ colours - REVEISERGB.JAVA...........cuiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 84
Saturation and Hue Filter - Saturation.java and Hue.java................ceeevveeveeiieieeieieennnne. 85
Modifying RGB colour channels — ModColourRGB.java...............ccuvvveveiiiiiiieeieeiiennnnne. 87
Reusability of code - CoNVOIUtIONMAL.JAVAccoiiiii 87
Detection of Edges - EAQeDEtECT.JaVa.ccvvviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 91
Horizontal Edge Detection Filter — HorizontalEdgeDetection.javacevvvvvveeeenee. 92
Vertical Edge Detection — VerticalEdgeDetection.java ..., 92
Emboss effect on images - EMDOSS.JaVaccouvvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee 93
Engrave effect on images - ENQrave.java.............couuuiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeee 94
Noise Reduction and blur - GaussianBlur.java............ccccccccvviiiiiiiiiiiiiiiiiiiiiieeeeeeeeee 94
Sharpening using Laplacian kernel — Sharpen.java............ccccccccuiiiiiiiiiiinns 95
V=11 = 110 o S 96
ViSiDIlity Of SYSTEM STATUSooiiiieeeie e 96
Match between system and the real Worldcccccvviiiiiiiiiiiiiieee 96
User control and frEEUOM..........iiii i 96
Consistency and StanNdardS............ooiiieeriiiiie e 96
o o] (=Y =T o1 (o o S 97
Recognition rather than reCallccoooi oo 97
Flexibility and effiCiency Of USE..........uoiiiii i e 97
Aesthetic and MiNIMalist deSIgNovviiii i 97
Help users recognize, diagnose, and recover from errorscccvvvvviiiiieeeeeeeevviie e, 97
Help and doCUMENTALIONcoiiiiiiiiie e e e e s 97
Conclusion and FUTUIE WOTKouiiiiiiii e 99
RETEIEINCE LIS ..ttt e e e e e e 100

Cole Pandya Btech451 End of Year Report 1506492

Introduction

Mobile applications were initially developed for general productivity and retrieval of
information such as email, weather report, stock market etc. However, due to the rapid
growth of mobile technology the public demand and developer tools led to expansion of
mobile games and social applications. The popularity of mobile applications has continued to

rise, as their usage has become increasingly common across mobile phone users.

My Btech project is to develop an image processing application for Android Platform by
developing enhancement and restoration filters for the images captured or supplied by the
user. This can be achieved by mathematical algorithms that are quick and efficient but also
useful for this purpose. Providing users with popular functionalities of desktop image
processing applications would definitely be an advantage and will encourage users to use
my application. The application will be extremely usefully to users who have a basic

understanding of the RGB values and how they can analyze them to make filter choices.

The filters range from basic ones such as brightness and contrast adjustment to more

sophisticated algorithms such as Image Equalization and Convolution filter.

Image restorations filters will be used to minimize the effect of degradation. This process is
heavily dependent on the type of degradation process | use as well the quality of an image.
Image enhancement is different to this process because enhancement of image involves
more extraction of image features. This report is a guide that provides step by step process
for the development of my application and also provides detailed reasoning for filter use and

its features.

Cole Pandya Btech451 End of Year Report 1506492

Related Work

Image processing is common for smart devices and there are probably thousands of
applications available on Google Play for Android users to download but | still wish to
develop a free-to-download image processing application. There are many reasons for this;
the main one is that free applications like “Photo Art — Colour Effects” or “Mytubo” and many

others provide no image restoration capabilities or proper
image enhancement facilities. These types of applications only
provide ‘arty’ effects which barely even enhance the detail of
the image. “Vignette Demo” is an application which provides in-
depth camera features and about 80+ filters such as Sepia,
Monochrome, and Vintage etc are widely available in majority
of applications. Having said that, they still do not enhance the
image, they are basically applying ‘arty’ effects on images so
that they could be shared on social media. The reason why
they use artistic effects is because they are extremely quick to
apply whereas, the image restoration and heavy enhancement
takes slightly longer (Barloso, 2012).

“Image Processing Camera” is an Android application for $1.56NZD

https://play.google.com/store/apps/details?id=kerokawa.jp.imageprocessingcamera but only

provides around 6 basic features and is not a fully fledged image
processing application for that price. Second reason for me to
develop an image processing application is that, my application will
be free of cost but will still consist of over 20 filters that enhance or
restore images. The only downside is that the complexity of the
algorithm will determine the time to apply the filters. The performance
aspect is discussed more in the Evaluation section of this report
(Barloso, 2012).

“Photo Editor — Fotolr” is a better example of an image processing
application because of the usefulness of the filters and it consists of

features such as album function and photo sharing. The important

feature of this application is the Makeover section which basically
allows the user to remove inconsistencies of the person in the image, not the image itself.
For example, acne removal is a filter offered that basically serves as a “beauty filter” and

usually these types of filters are available only on PC applications that are not always free.

https://play.google.com/store/apps/details?id=kerokawa.jp.imageprocessingcamera

Cole Pandya Btech451 End of Year Report 1506492

All the applications that | mentioned above have great Ul and perhaps my application may
not offer that as of now due to the time constraint but my main priority is to provide image
processing functionalities first and then worry about designing a sophisticated Ul interface. |
have many mock-ups for the Ul (later in the report) and the final selection is quite user-
friendly but there is always room for improvement (Barloso, 2012).

The difference between my application and the rest is the selection of filter offered. My filters
are implemented using algorithms that actually restore images or enhance them and | have
decided to implement some popular filters such as Hue, Saturation and Value/Brightness
from PC applications. | decided to leave the basic functions such as cropping etc as they are
already offered by almost all the smart devices equipped with a camera. Also, major
difference will be the RGB display feature which will help users with the decision making and
also to see the difference in distribution of intensities after applying the filters. Also | have

discussed uses of these filters later in the report.

There are thousands of image processing applications available today but most of them lack
the essence of image restoration and mostly include the artistic effects which do not serve
any purpose except sharing on social media or save to the media folder. This is where my
application will be different and also free to download to help users restore, enhance and

save images (Barloso, 2012).

Cole Pandya Btech451 End of Year Report 1506492

Research on filters and their use:

Image Equalization (Histogram Equalization)

This is one of the filters that | will be implementing for Picca and this is a non-linear mapping
of pixel-wise intensities in order to flatten the distribution of pixel intensities of the image
histogram. This advantages of this filter is that it will cause the dynamic range of the image
to increase which would lead to an increase in image contrast and also this filter can be
applied on images with either dark or bright backgrounds and foregrounds and can also
reveal details that are usually not shown. However, disadvantage is that this filter sometimes
outputs unrealistic images and this is dependent on the input image and therefore a user
who understands when the filter is to be used will be able to use the application efficiently
(Gimelfarb & Delmas, Part 3: Image Processing: 3.1. Digital Images and Intensity

Histograms).

An example of an image with The same image after

poor contrast equalisation,

il

Now the histogram shows a much

The histogram confirms just what

we can see by visual inspection: this more even distribution of values.

image has poor dynamic range] What will the cumulative histogram

- L for this image look like?

Figure 11: An image with poor contrast VS an image after image quilisation

As shown below, Image equalization involves mapping the initial distribution of pixel

intensities to a wider and more uniform distribution so the intensity values are spread over

2):

v

the whole range. To Givenanimage f and its histogram I = (H(q): ¢=0.1...., (

accomplish the equalization PEKETHINERGERETTEHIERIEGTIENES

effect, the remapping should €01 = HIO]

forq=1,...,Q do Clq] = Clg-1 1+ H[q]
be the cumulative distribution E B . E

function (cdf) (Gimelfarb & PRI RENTIRNRNN{EEITRRE WA

Delmas, Part 3: Image forq=0,...,Qdo
Tlql = Q * (Clql - cfo]) /7 C c[Q] - c[0])

Processing: 3.1. Digital

Images and ICHEIWA 3. Using the LUT 7', transform f into the equalised image g
Histograms). for all pixels (x,y) do glx,y]l = T[flx,y]]

Figure 12: Image equalisation algorithm

Cole Pandya Btech451 End of Year Report 1506492

Median Filter

Median filtering is a nonlinear method used to remove noise from images. The advantage of
this filter is that it is efficient and very effective at removing ‘salt and pepper noise without
hurting the edges. The median filter works by moving through the image pixel by pixel,
replacing each value with the median value of neighbouring pixels. The pattern of
neighbours is called the "window", which slides, pixel by pixel over the entire image
(Gimel'farb & Delmas, Part 3: Image Processing - 3.2. Image Filtering and Segmentation).

The main idea of the median filter is to use current pixel intensity, replacing each entry with
the median of neighbouring entries. The ‘window’ is the pattern of neighbours and it slides
through the image, over the entire image. For 1D signal (left image below), window is the
first few preceding and following entries. In my case, the signal is 2D (right image below) as
it's an image; more complex window patterns are possible such as "box" or "cross" patterns

(Gimel'farb & Delmas, Part 3: Image Processing - 3.2. Image Filtering and Segmentation).

The following example shows the application of a median filter to a simple
one dimensional signal. 2D Median filtering example using a 3 x 3 sampling window.
A window size of three is used, with one entry immediately preceding and Keeping border values unchanged

following each entry
Windowlor 5] 5] _ Sorted 0,0.1.(TR.2.4.4

~— Input Outpiit

x=3]3 Jo [4 [s2]3 [8 [6 [2 [2 [0 o T R, SR RERE
yl1] = medlar@)ﬁi 91=3 y[6] = median[3 6 8] =6 5 @ NERERE P CNEINIRE
v[2] = median[3 4 9] =4 vy[7] = median[2% 8] =& = = 1= 1- = 2
¥[3] = median[4 9 52]=9 yi8] = median[2 26] =2 1 (011 (0|1 |0 111 |1 |2 |0
y[4] = median[3 4 52] = 4 yi9] = median[2 2 §]1 =2 = PR P .
y15] = median(3 8 52] = 8 y110] = median[2 %8} = 9 12110}z)2 L)1l e

21513 |1 |2 |5 2121212 |2 |5
‘J‘:l:3 14 JQ J'1]B [B IB 12]2]Q] \ 1 1 | 2 0 1 } 2 3 0

For y[1] and y{9], extend the left-most of right most value outside the
boundaries of the image
_same as leaving lef-most or rght most value unchanged afler -Dmedian

Figure 13: 1D Median filter process VS 2D Median Filter process

2D signal algorithm:

The 2D implementation will be used to design my median filter but | plan on not to pad the
edges with specific values, strictly due to the slight loss of responsiveness. The image is
quite large and the user will not be able to notice the difference in the edges because the

median filter effect is subtle.

10

Cole Pandya Btech451 End of Year Report 1506492

Mean or Average filter

Mean filtering is another method used for ‘smoothing’ images by reducing the amount of
intensity variation between neighbouring pixels. This is achieved by moving through all the
pixels, replacing each value with a mean value of neighbouring pixels. When the filter
neighbourhood straddles an edge, the filter will interpolate new values for pixels on the edge
and so will blur that edge. Disadvantage to this filter is that it could be a problem if sharp
edges are required in the output (Gimelfarb & Delmas, Part 3: Image Processing - 3.2.
Image Filtering and Segmentation).

Mean filtering is based around a kernel, which represents the shape and size of the
neighbourhood to be sampled when calculating the mean. Often a 3x3 square kernel is

used, as shown below but can use higher

square kernel for more severe smoothing. simple one dimensional signal.

A small kernel can be applied more than and following each entry.

once in order to produce a similar but not ~ #reewfer il il

identical effect as a single pass with a ** 3.3 [9 [4 |s2{3 [8 {6 [2 [2 [9 |o

The following example shows the application of an average filter to a

A window size of three is used, with one entry immediately preceding

large kernel (Gimelfarb & Delmas, Part 3:
Image Processing - 3.2. Image Filtering

and Segmentation).

The mean filter (along with many other
filters for my application) can be designed
using a Convolution matrix and all | would
be changing is the kernel matrix and the

size (8.2 Convolution Matrix).

y[1] = round({3#3+9)3)=5
¥[2] = round({3+9+4)/3)= 5
y[3] = round((9+4+52)/3)= 22
y[4] = round{(4+52+3)/3)= 20
y[5] = round({52+3+8)/3)= 21

y[6] = round((3
y[7] = round((8+8+2)/3)= 5
y[8] = round((6+2%2)/3)= 3
y[9] = round((2+2+9)/3)= 4
y[10] = round{{2+9 =T

y=15 |5 [22]20]21]6 [5 |3 |4 |7 |

For y[1] and y[9], extend the left-most or right most value outside the

boundaries of the image

2D Average filtering example using a 3 x 3 sampling window:

Keeping border values unchanged

Average = round(1+4+0+2+2+4+1+0+1)9
Cutput

Input /

11

1lafo]1 |3 [N INERE
2@ 14 [21]2 |3 » 212 12 1 |3
1 1o |1]o |1 [o 2 1t [1o
112 |1 [o |2 |2 BERFRIRIRE
20513 |1 |25 NENERENERE
111 [a |23 o 1|1 {4]2 [3 |o

Figure 15: 1D Mean Filter (above) VS 2D Mean Filter (below)

Cole Pandya Btech451 End of Year Report 1506492

Contrast Adjustment

This is a basic but a quick method to alter the contrast of an image. This process is also
known as linear mapping and it involves adjusting the image by applying a constant gain a
and offset, or bias b to pixel values of an image g to form the new image f: f(x; y) = ag(x;
y) + b (Gimelfarb & Delmas, Part 3: Image Processing: 3.1. Digital Images and Intensity
Histograms).

Contrast adjustment is a process ‘stretching’ pixel-wise grey values (intensities) to span a
larger range of values. This process controls the amount of contrast applied to an image and

is shown the effects of different values of ‘a’ and ‘b’.

Parameters Image Histogram

Pixel value range: [18, 248]

urban

foliage /

a=1:b6=0

a<l:b>0

Figure 16: Shows differences in contrast with respect to different values of

'a'and 'b’

Again, the above example is shown for a grayscale image but in my project | am dealing with
colour and grayscale images. To ensure that | am able to use this process on coloured
images, | need to process each RGB colour channel separately with this formula for the

algorithm to work and this can be seen in the programming section of this report.

12

Cole Pandya Btech451 End of Year Report 1506492

Gaussian Filter

Another filter | am going to implement in my application is called a Gaussian blur and it is
also known as Gaussian smoothing (Fisher, Perkins, Ashley, & Wolfart, Gaussian
Smoothing, 2003). As the name suggests, it blurs an image by a Gaussian function to
reduce the image noise and reduce some detail. The effect of this filter will give an effect of
viewing the image through a translucent screen or create a softly blurred version of the
original image. This algorithm then prepares the images to be used by other fuzzy effects or
can be used just to remove noise (Gimelfarb & Delmas, Part 3: Image Processing - 3.4.
Moving Window Transform) (Efford, 2000).

Mathematically the Gaussian blur is the same as convolving the image with a Gaussian
function. Also, applying a Gaussian blur has the effect of reducing the image's high-
frequency component; hence a Gaussian blur is thus a low pass filter. This is similar to mean
filter as it removes noise and blurs the image but uses a different kernel that represents the
shape of a Gaussian (‘bell-shaped’) hump. Then the Gaussian kernel is formed (Figure20)
and the convolution is performed by convolving into the x direction first and then y direction
after. There are many different kernels available for Gaussian blur but | decided to go with
the one from compsci373 lecture notes (Gimel'farb & Delmas, Part 3: Image Processing -

3.4. Moving Window Transform) (Cheng, Huang, & Kumimoto, 2006).

AR
16| 26 | 16 | 4
7
[

1 e An example: 5 x 5 window; o = 1.
|
l
—| 7126 41| 26 |
|
1

Standard deviation of the Gaussian probability density function e The larger the value of , the wider the

guides its behaviour: 273 6136116 peak of the Gaussian and the larger the
e 68% of the x-values are the range [mean — o, mean + o — v blurring.
e 95% of the x-values are the range /mean — 20, mean + 20 : : : 1 |l
e 99.7% of the x-values are the range [mean — 3o, mean + 3o

Gaussian filter: blurred edges; residual noise.

+

20

Figure 19: Standard deviation of the Gaussian probability
density function

Salt-and-pepper noise Filtered image

Figure 20: Gaussian filter process and image differences

13

Cole Pandya Btech451 End of Year Report 1506492

Edge detection

I am also planning to use “Edge detection” filter for my project because it is efficient for
image smoothing to more accurate approximation of derivatives in edge detection. However,
this filter has a few downsides such as:

e Itis not known for removing salt-and-pepper noise
e Itis robust when it comes to averaging outliers which leads to large deviations

¢ In that case, median is more robust when dealing with outliers

Edges in initial image Edges after Gaussian smoothing

Figure 21: Edge detection on an image and then Gaussian smoothing after

(Gimel'farb & Delmas, Part 3: Image Processing - 3.4. Moving Window Transform) (Jain,
2002).

14

Cole Pandya Btech451 End of Year Report 1506492

HSV Colour space filters — Hue, Saturation and Brightness

If I was to include some of the popular PC application filters such as Hue, Saturation and
Brightness, | would need to understand the HSV colour space first.

To understand the HSV colour space | would need to understand what ‘colour means first.
Colour is considered a visual by-product of the spectrum of light as it is either transmitted
through transparent medium, or as it is absorbed and reflected off a surface. So, it is the light
wavelengths that the eye receives and processes from reflected objects. The colour is made
up of 3 main integral parts: Hue, Saturation (chroma) and Value (lightness or darkness)
(Hue, Value, Saturation).

Hue is described as the dominant wavelength and is the first item we refer to when adding in
three components of a colour. This is an essential choice for a filter because it is the
dimension of colour we readily experience. In my project, the bitmaps are in ARGB
configuration and a pure hue equivalent to full saturation is determined by ratio of the
dominant wavelength to other
wavelengths in colour. Saturation is

" ---D-.._Saturation also known as ‘chroma’ and it
‘- Vg .. defines the intensity of a colour.
/)U ________ N ‘ When Hue pigment is toned, white
and black/grey intensities are
mixed with the colour to reduce the
effects of saturation. Value refers to
the lightness and the darkness of a
colour. Dark values with black
added are called “shades” of the
given hue name and the light
values with white pigment added
- are called “tints” of the hue name

Stained (Hue, Value, Saturation). The final
project will contain these three

filters because they are extremely popular in PC image processing applications.

15

Cole Pandya Btech451 End of Year Report 1506492

Convolution Filter

I will need to reuse some of the code to design some of filters like sharpen, different types of
blurs, mean and so on. To achieve this, | will use a Convolution matrix filter which is the
treatment of a matrix by another one which is called “kernel”. The first matrix is the image
pixels and the second filter is the kernel. The kernel determines the type of filter this will be,
for example edge detection will have a different kernel to Gaussian Blur. This filter can
handle different sizes of kernels as long as they are odd (3x3 etc) (8.2 Convolution Matrix)
(Vandevenne, 2004).

The convolution filter multiplies the values of pixels by the kernel’s corresponding value.
Then it adds the results, and the initial pixel is set to this final result value (8.2 Convolution
Matrix).

35 (40 (41 45|5[J

40 (40 |42 |46 |52

of[1]o0
42 |46 |50 (55 |55 X 0|00 42
ofo]fo —

48 |52 |56 |58 | 60

56 (60 |65 ?Dl?E

The example above has the image matrix on the left, kernel matrix in the middle and the
output matrix on the right. The image matrix has each pixel value marked and the initial pixel
has a red border. The filter reads from left to right and top to bottom.

Here is what happened: the filter read successively, from left to right and from top to bottom,
all the pixels of the kernel action area.

Process: (40*0)+(42*1)+(46*0) + (46*0)+(50*0)+(55%0) + (52*0)+(56*0)+(58*0) = 42. In the

resulting image, the initial pixel moved a pixel downwards (8.2 Convolution Matrix).

16

Cole Pandya Btech451 End of Year Report 1506492

Engrave

To get the engraving effect on images, | am using the below kernel in conjunction with the
Convolution Matrix. This gives an image an old style print look of a metal engraving. |
decided to use it with conjunction with Edge detection algorithms to highlight the effect
(Houston, 2011).

Flip Image

In the camera package, some of the devices will automatically flip the image through the
camera but if the device is not compatible then there is a need to flip the image manually.
This is quite a basic filter and shown how it is implemented in the programming part of the

report.

Grayscale

In image processing, this is a useful and common filter used in image processing
applications. This is one of the filters which | would like to include in the application even
though many applications already implement it. In digital images, these types of images
known as black and white but are made up of shades of gray. Grayscale images are often
formed as the result of measuring intensity of light at each pixel in a single band of
electromagnetic spectrum and in these cases they are monochromatic (Chanda & Dutta,
2005).

17

Cole Pandya Btech451 End of Year Report 1506492

Horizontal and vertical edge detection

Imagine a case where the user wants to select just the horizontal or vertical edges. The
problem with a fully fledged edge detection algorithm is that you cannot separate the vertical
edges from horizontal edges. Therefore, implementing different types of edge detection
filters will be the solution. There are many edge detection kernels but after trial and error |
was able to find a couple that work efficiently which | discuss later in the programming part of
the report (Rhody).

Figure 4 Edze produced by vertical gradient calculation.
Figure 2. Image produced by the horizontal gradient calculation.

Message on Image

This is a basic filter that should only be applied at the end of image processing steps. This
filter is used to place a string at position (X, Y) on the image. Currently | have designed it so
that it places the text in the center of the image. The intent was to implement a layered filter

similar to Photoshop but that might be too complex for an Android device application.

ModColour RGB

This filter is used to change selective RGB colour channel. This is done by multiplying values
to R/G/B value of each pixel. The input is received from the user and then multiplied with the
colour channel values. So for example if the user wishes to increase Blue in an image, the
input values should be R =1, G= 1 and B>1. The objective of this filter to reduce or increase

specific colour channels to give a monochrome effect.

18

Cole Pandya Btech451 End of Year Report 1506492

RGB Histograms feature

After some discussion with my supervisor, we came to a conclusion that my project should
include a view that will display RGB histograms separately. This is a useful feature for
someone who knows how to read and use the histograms to finalize their filter choices.

The colours (or pixel values) you see in an image are derived from varying combinations of
red, green and blue. The colour of each pixel in an RGB digital image is determined by the
value (0-255) assigned to each colour channel RGB for each pixel. In other words, each
pixel contains values for RGB and we need to separate the values to map them on the
histogram. The following provides a way to separate ARGB values from a pixel (Hoffmann,
2006):

A = (pixels [index] >> 24) & OxFF;
R = (pixels [index] >> 16) & OxFF;
G = (pixels [index] >> 8) & OxFF;

B = pixels [index] & OxFF;

The RGB colours are expressed as a numbers between 0 and 255 where the 0 represents
pure black and 255 represents pure white. Basically, the image histograms will be presented
as bar chart with the horizontal axis being the range of values (0-255) and the vertical axis

will represent the frequency of those the range of values (Hoffmann, 2006).

Imagine a scenario where the user captures an Image and clicks the RGB Histogram button
in the application and sees that there are peaks in the graphs at particular tonal range. This
means there is a high frequency of R/G/B values in that range. Depending on the distribution
of the frequency, the user can now choose to use a filter like Image Equalization etc to
reduce the effects of the peaks and this decision is made by using the histograms shown. To
assist the user even more, | include mean and standard deviation of each RGB colour value
separately just like the histograms. In Photoshop, the user can click on an area of the
histogram graph and read the intensity value from the range, for example: At R = 200, the
intensity is 5. This can be an optional addition to Picca if there is any time left at the end
(Hoffmann, 2006).

Histograms can vary depending on the RGB content of the image. A histogram of a high key
image with a majority of the content being very bright will produce a histogram that has most

of the histogram graph located from the center to the right of center. A low key image with

19

Cole Pandya Btech451 End of Year Report 1506492

lots of dark and shadow areas will produce a histogram graph that is mostly center and left
of center. Filters like increase in brightness can shift the histogram values to the right etc. To
take advantage of the RGB histogram feature, the user must apply the filter and then go
back and check the change to the histogram and then choose the next filter and so on.

Once the user has a basic understanding of at an image's histogram and figure out which
parts of the graph correspond to the different tonal ranges and components in that image.

Other Filters

In the “App Development” section of this report, | discuss about filters that | added close to
the submission date. They are explained in depth and it is easier for the reader to

understand because | have provided the source code and explained each part.

20

Cole Pandya Btech451 End of Year Report 1506492

Project Overview

My project goals are to develop an application for mobile devices that provide users with
some of the common features of desktop image processing applications and also to provide
users with image enhancement and restoration support, provided that the image is in the
condition to be restored or enhanced. Secondary goal of this application is to give users an
understanding of the RGB histograms display to check how filter algorithms affect the

distribution and how it can be used to make decisions on filter selections.

Currently, there are many Android applications that include basic image editing features
such as crop, rotate etc but not all of them are useful when the image is degraded in quality
or needs to be enhanced to reveal more detail. The user can always use a desktop
application to process images; however applications such as Photoshop are expensive to
buy and need a PC. So that being said, how can | incorporate some of the major problems of

image processing on Android devices and solve it using an Android application?

The application will need to focus on multiple problems such as digital noise, bad exposure,
blurry images, and distracting elements in our digital photos etc. The most common issue is
digital noise and this is the “grain” that we sometimes notice in film photography. There are
many types of digital noise so implementing just one filter for digital noise would not be
reliable or usable because the image quality changes because no two images are the same
(unless of course we copy) so there needs to be a few options that user can apply to get the
best possible result. Considering the scenario of different types of digital noise to use it for
other image quality issues, the types of filters needs to be researched and how they can be

used together to process the image.

The major reason for motivation was that image processing applications on Android
sometimes have limited functionalities such as just smooth filter. | want to incorporate some
of PC application features into my application. Also, | am completely new to this area of
programming and this will be my first Android application and this project will give me the
skills and knowledge to develop a complete application because | want to be a developer of

applications for maobile devices in the future.

21

Cole Pandya Btech451 End of Year Report 1506492

Project Requirements

Picca must be an image-processing application developed for the Android devices
with screen size of 5” and over due to the layout of the application.

Must include at least three different screens. Homescreen, Filter screen and another.
The design must be aesthetic and follow usability guidelines.

The application must provide instructions to the user on how to use it.

Picca must solve problems such as: digital noise, bad exposure, blurry images, and
configure colour and contrast by implementing image enhancement and restoration
filters

Image enhancement filters must improve the quality of an image captured by the
camera or stored in the media folder by manipulating the image.

Image restoration filters must restore corrupted/noisy image and developing a new
image from the original. Corruption may come in many forms such as motion blurs
noise etc.

Provide common features such as Hue, Saturation and Brightness etc found in
popular desktop applications.

The application must provide the user with variety of filters who meet the goal of
image enhancement and restoration.

The types of filters must be approved by the supervisor.

The images can also be loaded from a file location instead of using the camera to
capture them.

The application must be able to restore the image back to original if the user decides
not to save the image after applying the filter.

The application must allow filters to be applied in conjunction with each other.

The application must provide image-selection functionality directly from the
homescreen using buttons.

When trying to select images from a file location, they must be displayed using
GridLayout with thumbnails and sorted according to the date.

The application must start and close without any errors. Providing an Exit button will
help close the application safely.

The images can be saved in a JPEG due to compression benefits and quality.

The filtered images must be saved back in the media folder without reduction in
quality (kept at 100%).

The application must provide a display of RGB Histograms of the selected image so

that the users can make decisions based on the distribution.

22

Cole Pandya Btech451 End of Year Report 1506492

e The application must have reusability of code and must be as responsive (dependent
on the filter complexity) as possible.

23

Cole Pandya Btech451 End of Year Report 1506492

Android App Development

Android is an open source OS designed for mobile devices and has the largest share of
mobile device market. The reason of its success is because there are a lot of applications
that are available for the Android users. The applications are developed using the Standard
Development Kit (SDK) and it is a free development kit. The new version of Eclipse Android
SDK is offered as a complete download on the Eclipse website as compared to before where
it was available to download as a plug-in to Eclipse. The applications can be shared through
Google Play (also known as Android Market) and can be used by anyone. Next, | will provide
some insight on the Android Architecture (Android).

Android Architecture

The Android Architecture has made up of different layers, where each layer is a group of
program components (see image below). It includes operating system, middleware and
important applications. Each layer in the architecture provides different services to the layer
above it (Android Architecture — The Key Concepts of Android OS, 2012) (Market).

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Window Content

Activity Manager Manager Providers

Teleohony Resource Locatson Notiffication

Paciage Manager Manager Manager Manager Manager

LIBRARIES ANDRDOID RUNTIME

Surface Manager Meoda Core Librares

Framework
oA gl

OpenGL | ES freelype Machine

SGL SSL

LiNnuX KERNEL

Display
Driver

Fash Memory Binder (IPC)

Camera Driver
Driv Driver Driver

5 Audio Power
wnsd Drive F o L
Keypid Driver WiFi Drve Drivers Management

Figure 22: Android Architecture

24

Cole Pandya Btech451 End of Year Report 1506492

Linux Kernel

The most basic layer is the Linux kernel and the Android Operating system is built on top of
the Linux Kernel. Linux interacts with the hardware and contains all the essential hardware
drivers. The Linux kernel also acts as an abstraction layer between the hardware and other
software layers. The memory management, process management, networking and security
settings are used by Linux as its core functionality (Android Architecture — The Key Concepts
of Android OS, 2012).

Libraries

As seen from the image, the next layer consists of Android libraries. This layer allows the
devices to handle different types of data and they are developed in C or C++ language and
specific for a particular hardware. Some of the components are as follows (Market):

Surface Manager: This component is used for combining window manager with off-screen
buffering and that means that you cannot directly draw into the screen, instead the drawings
go to the off-screen buffer (Android Architecture — The Key Concepts of Android OS, 2012).

Media framework: Media framework provides different media codec that allows playback

and recording of different media types.
SQLite: This component is the database engine used in android for data storage purposes
WebKit: This is the browser engine used to display HTML content.

OpenGL: Used to render 2D or 3D graphics content to the screen

Application Framework

The application framework manages the basic functions of phone like voice call
management; resource management etc and these are tools with which we can build our
applications (Android Architecture — The Key Concepts of Android OS, 2012).

Some important blocks of Application framework are:
Activity Manager: Manages the activity life cycle of applications
Content Providers: Manage the data sharing between applications

Telephony Manager: Manages all voice calls. We use telephony manager if we want to

access voice calls in our application.

Location Manager: Location management, using GPS or cell tower

25

Cole Pandya Btech451 End of Year Report 1506492

Resource Manager: Manage the various types of resources we use in our Application

Applications

The top layer in Android architecture is called ‘Applications’ and this where developer
applications are going to settle. Several applications are installed from factory such as SMS
client app, Dialer, Web browser, Contact manager etc. This layer allows us to write an
application which can also replace any existing system application (Android Architecture —
The Key Concepts of Android OS, 2012).

26

Cole Pandya Btech451 End of Year Report 1506492
Eclipse Android SDK
Setting up SDK
To develop Android applications, | need to use the —
Android Developer Tools (ADT) plug-in for = Fee - | DNenstae | B =| & tppTheme =
. . . . o o et o= EREE
Eclipse and it provides an environment for building Text Fickds
- . - m
Android apps. It contains the full java IDE that mm
would allow me to build, test and debug my ImageVies (3] lmageSition o Search
Android application. This software is free, open- = g ="
source and runs on the major OS platforms (Get
the Android SDK).
Graphical Ul Builders
Android SDK contains a Graphical Layout Tool
(Figure 1.) that allows drag and drop of Android Ul
components. It also allows you to visualize the Ul
on Android devices and switch themes, even . .
Time & Date Figure 1: Graphical
platforms versions without building the code. Translticns Layout Tool
el]

Develop on Hardware Devices
I can run my application on any commercial Android L

& Ect Androwd Virtual Device (AVD) Yo
hardware device or multiple devices by deploying my app to :

AVD Name: Neows Test
connected devices from the IDE. It also allows me to live ko Nt A 0 5 W) =
debug on-device, test and profile my application. Target: Andeoid 422 - APi Leved 17 -

Develop on Virtual Devices

I am using the emulator to run my application for the starting
stages such as tutorials and buttons. The Android Virtual
Device lets me define the parameters such as the device,
memory, SDK version and then save the options to use later
without redoing the process again. It includes advanced
hardware emulation and that means it includes the camera,
sensors and multi-touch functionalities. Once the complexity
of the project grew, | bought myself a couple of Android
Tablets so that it would allow me to debug application quick

and easy (Android Emulator).

27

CPU/ABL
Keyboaed:
Skon

Front Camera

Back Camera:

Memaory Options:

Internal Storage:

SO Caed:

Emulation Options:

emulator

7| Hadware keybowd present

7| Display & sion with hatdware controls

None v

None -
RAM: 500 VM Hesge 32
200 MB ~
9 Sze 100 ME ~
File
7| Snapshot Use Host GPU

Figure 2: AVD settings for

OK Cancel

Cole Pandya Btech451 End of Year Report 1506492

AVD and the Emulator

An interesting feature in the Android SDK is that | can configure an Android Virtual Device
(Figure 8) to create an Emulator (figure 9) to parts of my application and in this section | will
provide an in-depth explanation of how it works. The emulator feature would basically let me
prototype, develop and test my application without using a physical device.

The Android emulator (Figure 9) mimics all of the hardware and software features of a
typical mobile device, except that it cannot place actual phone calls. It still provides variety of
navigation and control keys which | am able to click (or use the keyboard for input) for
interaction with my application (Android Emulator).

H
5
b

3 Andecid Virtusl Device Manager = (5]

Aredrod Viltual Devices | Devace Delinitces

Lt of exmtting Android Virbusl Devaces locsted o8 Cillsers Chunlnd andmidiuned
AVD Nams Target Name Flatfaim APl Level CPU/AEL Hew,
e Moyt T Arndrgd 4.2 423 17 ARM [airmgabi-v...
Refresh
w i valid Andeoid Virtusl Device & repairsble Android Virtual Device

¥ An Andieed Virtual Deace thet (aded 1 lead. Chek ‘Detils’ 0o o8 the bived,

Figure 8: AVD manager which allows to create/modify the . |
properties of the virtual device Figure 9: A picture of the emulator that | am

using to run my application

It provides a variety of navigation and control keys, which you can "press" using your mouse
or keyboard to generate events for your application. It also provides a screen in which your

application is displayed, together with any other active Android applications.

| have to use Android Virtual Device configurations to create a new device to specifications |
want such as hardware aspects such as front/back camera etc. The AVD can be used to test
applications on many different device configurations. To debug my application, | can use the
console from which | log the kernel output, simulate application interrupts and simulate

latency effects.

28

Cole Pandya Btech451 End of Year Report 1506492

A test user input program using Emulator

Once | had setup the AVD properties (Note: this sample
program is in portrait mode but Picca has landscape
orientation), | decided to run a simple user input tutorial
just to check if the emulator was able to execute without
any errors. At first, the emulator takes around 3 full
minutes to load and then | later learnt that it can be run
from ‘snapshot’ which significantly cuts down the time. In
this demo, | had added the ‘TextField and a ‘Search’
button as you can see on the left. However, the time to
load is way too long and therefore from now on | will be
using the Debug mode on my Android tablet to execute

the application (Android Emulator).

29

8! Picca

)Eﬁ";ir;' Image keywords Search
)

Figure 10: Homescreen tested on emulator

Cole Pandya Btech451 End of Year Report 1506492

Balsamiq Mock-up Tool

After some research on mock-up tools, | have able to come across Balsamiqg mock-up tool
that | can use to develop my prototype for Picca. The reason for using this software is
because it feels like the mock-up is hand-drawn, however it is a digital mock-up which allows

me to tweak and rearrange easily whenever | want (Balsamiq Mock up Tool).

- 4 ol x
O vt veniin T R -
e dit Ve He
= . [L
B rd sl
B eemciad
o] EELEIT= O cwass | LB ®
e
Bultan Bummen & | Tab & Coecubax Ched kb Cidup [ST Combolan | Pull . Date Choaier | O Helg Eurtan

Figure 2: Balsamiq Mockups Tool displaying a blank canvas with Functionality panel

Features

Low-Fi Sketch Wireframes

The mock diagrams look as if they have been sketched and appear low-fidelity wireframes

and this allows the viewer to focus on the functionality of the components.
Ul Components & Icons

The version | am using has over 40 built-in Ul components and over 100 icons that | can

drag and drop on the canvas.

Export to PNG or PDF

30

Cole Pandya

Btech451 End of Year Report 1506492

I can also share or present mock-ups with embedded links using PDF export, or use a 3rd

party tool to export to code (Balsamiq Mock up Toaol).

Mock-ups using Balsamiq for Picca:

(@Searchimage keywords) I Search I

Figure 4: Homescreen mbckup created using

the Balsamiq Mockup Tool

Filter1 Fitter2 and 50 on

R

user wants to edit

-

Figure 5: Filter screen mockup created using

the Balsamig Mockup Tool

Figure 4 displays the homescreen of Picca and this
gives the user a basic idea of the layout and function of
the application. The boxes with ‘crosses’ represent
images that will be directly loaded from the user's media
album which allows selection without going to the media
folder every time he/she wants to edit them. Also |
decided to include a search bar at the top of the screen
so the user can retrieve an image via the name it is
saved under. Once the user clicks on an image he/she
wants to enhance or restore, they will be directed to the

screen below.

As seen by Figure 5, this is the main screen which
allows the users to apply filters on the image of their
choice after they select it from the screen above. On
the top panel are filters that | will implement and once
selected it will calculate and display the new image.
The user can then save the image if they wish or they

can click ‘Back’ to apply more filters.

31

Cole Pandya Btech451 End of Year Report 1506492

Revised Picca Mock-ups

Picca

@;&-x::h mage keywords D I Search I

Figure 6: Revised homescreen mockup using
the Balsamiq Mockup Tool

Filter [sove

Filter1 Fiter2 Fiter3

Figure 7: Revised filter screen mockup using
the Balsamiq Mockup Tool

As seen by Figure 6, | decided to revise the mock-
ups and add the name of the application at the top
of the screen. | also ran the application and found
that 2 images in a row appear way too big and |
decide to add another column of images so that it
would look proportional to the screen-size.

Main changes were done to this screen (shown by
Figure 7) to increase the ease of use and overall
layout of the application. The filters will now be placed
at the bottom of the screen where the user can easily
access it without reaching all the way to the top to
change filters. The placement at the bottom also
allows a “preview” of the filter on the image and will

give more of a ‘thumbnail’ effect.

32

Cole Pandya Btech451 End of Year Report 1506492

Final Mock-ups for Picca

PICCA

Capture, modify and save. All in one

|Loadlmage1| |LdemugeE| | Step 1. I |Step£| | EXIT I

Option 1: Load images from location using "Load Image 1" and "Load Image 2" buttons AMD Click on Step 2 button
to apply fitters.

Option 2: Capture images using the Front/Back camera by dicking the "Step 17 button AND Click on "Step 2°
button to apply filters.

The amount of information | wanted to display for this application means that | need a larger
screen size and this is why | bought 2 android tablets of different sizes, 5.4” screen and 9.7”
screen. | decided to use the Landscape mode for my application and the homescreen in the
revised mock-ups included a Grid View image display but to implement it in Android would
use up a lot of resources if the user wanted to capture images via the camera. So then it
would be efficient to include buttons that would load the images from a file location and then

jump straight to Step 2 to apply filters.

Switch

somero Tap to take a picture

Cole Pandya Btech451 End of Year Report 1506492

The above screen shows the camera interface and it is a basic design as the user should not
be distracted with other insignificant features. If the device has a front camera, the user is

RGB Histograms
Modify Hue I
Saturation I

Brightness

able to switch by the clicking the icon on the top left of the screen.

=

Image

The mock-up above is for the screen where filters will be applied. On the left hand side, the
buttons represents different types of filters and the most common operations will be on the
ImageView such as Save, Reset, RGB Histogram etc. There has to be a vertical scroll option
for the filter buttons because | will be implementing quite a few. The above mock-ups consist

of simple design and it is kept consistent all throughout the application.

After consulting Patrice, he wanted me to have a RGB histogram feature that would display
the RGB intensities separately for the user to see. So | decided to create an initial mock-up
and can be seen below. Just providing the RGB histograms may not be enough as the user
would still want more information regarding the image and which is why | decided to include

the mean and standard deviation of RGB colour channels separately.

34

Cole Pandya Btech451 End of Year Report 1506492

Mean R/G/B: X,Y,Z
SD R/IG/B: X,Y,Z

Next, | need another screen to display the RGB histograms for the image selected in the

ImageView. The graphs will span the whole screen because the range is quite wide 0-255.

35

Cole Pandya Btech451 End of Year Report 1506492

Introduction to Bitmaps

What is a Bitmap?

A Bitmap is an array, or a matrix of square pixels (picture elements) arranged in columns
and rows with each pixel containing a colour value (Bourke, 1993) (Gonzalez & Woods,
2007).

1

N pixels horizontally

1)

pixels

I pixels wvertically

The number of pixels you need to get a realistic looking image depends on the way the
image will be used. Most common uses for bitmaps are that they are used to represent

images (Introduction to Image Processing).
Some of the common types of bitmaps:

1 bit (black and white)

This type of bitmap contains the smallest possible information per pixel and this type of
bitmap is also known as monochrome or black and white. Since it only contains 1 bit, the
pixel value of O represents pure black and pixel value of 1 represents pure white. Below is an

example image of 1 bit bitmap (Bourke, 1993).

36

Cole Pandya Btech451 End of Year Report 1506492

Grayscale — 8 bit

In a grayscale image each pixel has an intensity that ranges from 0 to 255. By convention 0
is black and 255 white. The gray levels are the numbers in between, for example, pixel value
of 127 would be a 50% grey level. A normal greyscale image has 8 bit colour depth = 256
possible grayscale values (Bourke, 1993) (Castleman, 1995).

a 2656

32 bit ARGB

In this type of bitmap, the intensity of each ARGB channel is defined by 8 bit and is arranged
in the following manner.

Sample Length: g 3 g a
Channel Membership: Alpha Red Green Blue
[T T [T [I [[T [TT1T7
Bit Number: 31 30 29|28 27 25|25 24 23|22 |21 201918 17 1615 14 131211109 |8 |7 |6 |5 4|3 21 |0

The Alpha colour depth is found in the highest 8 bits, followed by the Red, Green and Blue.
This implementation is used in my project to modifying each colour component separately.
Similar to this, a bitmap which contains 24 bits is known as RGB bitmap and doesn’t contain
the alpha value. | can create a grayscale image using this type of bitmap by setting the RGB
intensity the same per pixel (Chanda & Dutta, 2005).

16 bit RGB

This type of bitmap involves the RGB components to use 5 bits each and 1 bit for alpha
(Bourke, 1993).

37

Cole Pandya Btech451 End of Year Report 1506492

Bitmap Resolution

Pixels have no explicit dimensions and therefore resolution is an attribute which is used
when viewing or printing bitmaps. Resolution can be specified in a few ways with pixels per
inch being the most common but could also be represented in any other unit of measure.

The quality of the bitmap when displayed or printed depends on the resolution. Since the
resolution determines the size of a pixel it can also be used to modify the size of the overall
image. Whenever a bitmap is displayed, the device screen resolution also needs to be
considered (Bourke, 1993).

38

Cole Pandya Btech451 End of Year Report 1506492

Picca programming work

1. AndroidManifest.xml

Description

Basically the manifest file describes the fundamental characteristics of the app and defines
each of its components. Firstly, | included the <uses-sdk> element and this it to declares
Picca’s compatibility with other Android versions using the android:minSdkVersion and
android:targetSdkVersion attributes. For my application, | decided to set the
android:targetSdkVersion high as possible and test your app on the corresponding

platform version.

The full AndroidManifest.xml file is shown below:

<?wml version="1.8" encoding="utf-8"7>

<manifest xmlns:android="http://schemas.android.com/apk/res/android”
package="nz.ac.guckland.Picca.app”
android:versionCode="12"
android:versionName="g.2" >

fuses-sdk
android:minsdkVersion="8"
android: targetsdkVersion="17" /»

fuses-permission android:name="gndroid.permission. CAMERA™ />

<uses-feature android:name="android. hardware. camera™ /=
<uses-Teature android:name="gndroid. hardware. camera. gutofocus” /=

<uses-permission android:name="gndroid.permission. CAMERA™ />
fuses-permission android:name="gndroid.permission. WRITE_EXTERNAL STORAGE™ [:
<uses-permission android:name="gndroid.permission. INTERNET" />
<uses-permission android:name="android.permission.ACCESS NETWORK STATE™ />

<uses-feature
android:name="agndroid. hardware. camera®
android:required="false™ />
<uses-feature android:name="android. hardware.camera.any” /=
<uses-feature android:name="android.hardware.screen. landscape™ /=

| <application
android:allowBackup="trus"
android: icon="@drawable/ic_Louncher”
android:label="@string/ app_name"
android: theme="@style/AppTheme™ >

39

Cole Pandya Btech451 End of Year Report 1506492

e e
<activity
android:name="picca.main. packages. Moindctivity
android:configChanges="orientation”
android:screenOrientation="Llandscape” =
<intent-filter:
faction android:name="gndroid.intent.action.MAIN" />

or

ar

<category android:name="gndroid. intent. category. LAUNCHER

<fintent-filter:

<factivity:

<activity
android:name="camera. packages. Cameradctivity”
android:configChanges="orientation”
android:screenOrientation="Landscape” />

<activity
android:name="edit. pictures. packages. EditPicturesActivity”
android:configChanges="orientation”
android:screenOrientation="Llandscape” />

</application:

</manifest>

I have different intent-filters in the manifest and an intent filter basically lets the system know

which service request an activity, services or broadcast can handle.

For example, if | was coding for an image viewer, then | would add an intent filter to the

manifest describing the images | would be handling.

40

Cole Pandya Btech451 End of Year Report 1506492

Introduction to Linear Layout, TextFields and Buttons

LinearLayout

For my application, | began with creating a LinearLayout and this is a view group (a subclass
of ViewGroup) and which allows the setting of orientation.

android:orientation="horizontal™ >

The other two attributes that are needed to create the LinearLayout are
android:layout_width and android:layout_height, because they are required for all views
in order to specify their size.

android:layout width="match parent"

android:layout_height="match parent"

The reason why the above attributes are set to match_parent is because the LinearLayout

should fill the entire screen area that's available to my application.

TextField
Next | decided to add a Text Field object by doing the following:

£EditText android:id="{g+id/edit_message"
android: layout_weight="1"
android: layout width="@dp"
android:layout height="wrop content”
android:hint="@string/ edit message”™ />

The weight value is a number that specifies the amount of remaining space each view
should consume, relative to the amount consumed by sibling views. The default weight for all
views is 0, so if you specify any weight value greater than 0 to only one view, then that view
fills whatever space remains after all views are given the space they require. So, | filled the
remaining space in my layout with the EditText element by giving it a weight of 1 and leaving

the button with no weight.

android:id: provides a unique identifier for the view, which | can use for reference when |

want to read and manipulate the object.

The ‘at’ sign (@) is required when you need to refer to any resource object from XML. It is
followed by the resource type (id in this case), a slash and then the resource name

(edit_message).

41

Cole Pandya Btech451 End of Year Report 1506492

android:layout_width and android:layout_height: The wrap_content value specifies that
the view should be only as big as needed to fit the contents of the view.

Button

To add a simple button, | use the below code just to see how it works. However, in the main
project, | will be implementing custom buttons using the Drawables options to define custom
buttons.

<Button
android:layout_width="wrap_content"”
android:layout_height="wrap content”
android:text="@string/button search"
android:onClick="sendMessage” />

During the mid-year break | was able to discuss more about my project with Patrice and we
believed that GridLayout should be implemented after all the other aspects of the application
are finished.

| am provided by a basic application template by Patrice and then | begin developing it to the

specifications of my application.

42

Cole Pandya Btech451 End of Year Report 1506492

Custom buttons for my application

Background_menu.xml

First | design a gradient background for the Homescreen of my application and this is
achieved by doing the following:

<?xml version="1.0" encoding="UTF-8"72>

J<shape xmlns:android="http://schemas.android. com/apk/res/android" >

<gradient
android:endColor="#cfeledFF"
android:gradientRadius="32"
android: startColor="#7faacaFF"
android:type="radial" />

-</shape>

Basically it has a start colour and an end colour and the gradient is used as the change
between the two. To use this effect | need to use the android:background attribute and

point it to the location of the file and this is shown below.

¢Relativelayout xmlns:android="http://schemas.android. com/apk/res/android”
xmlns:tools="http://schemas.android. com/tools™
android:layout_width="Ffill_parent”
android:layout_height="Ffill parent”
android:background="gdrawable/background_menu™
tools:context="_Maindctivity" >

ltems in my Drawables-hdpi/mdpi/xhdpi folders

+ Piccafipp » PiccaFinal » PiccaFinal » res » drawable-hdpi

elp
wary - Share with + Slide show Burn Mew folder
btn_menu_done btn_menu_norm btn_ menu _presse | ic_action_switch_ ic_arrow ic_launcher

al camera

The above images will be used for the buttons during their different states of use. The

names are self explanatory as to where they are going to be used.

43

Cole Pandya Btech451 End of Year Report 1506492

button_blue red transluscent.xml

Next, if | wanted to place any buttons on top of the ImageView then | would need to ensure
that they are translucent. When the button is pressed it is assigned Red but when the button

m ContrastStretch.java | PiccaFinal Manifest < activity_main.xml 3 button_blue_red_transluscentxml &3

k?xwl version="1.8" encoding="utf-8"73

2 <selector xmlns:android="http://schemas.android.com/apk/res/android™>
3

= <item andreoid:state_pressed="true":<shape:

5 <selid android:coler="@color/red translucent™ /=

6

7 <stroke androidiwidth="Idp" android:color="#9ESESE" />

8

g <padding android:bottom="15dp” android:left="28dp" android:right="28dp" android:top="15dp" />
16
11 <corners andreid:radius="5dp" />
12 </shapex</item:>
13 <item><shape>
14 <solid android:color="@color/blue_translucent™ />
15
16 <stroke android:width="Idp" android:color="#9E9E9E" /:
18 <padding andreid:bottom="15dp" android:left="28dp" android:right="28dp" android:top="15dp" />
19
20 <corners android:radius="5dp" />
21 </shape></item>
22
23 </selector>

is normal it is assigned Blue. Note: for both states, the colours are kept translucent.

button_white_red_transluscent.xml

Similarly to above, | have designed another .xml file that when pressed the colour is Red and

in the normal state it is kept White. Again, both the states use translucent colours.

k2xml version="1.8" encoding="utf-8"5
<selector wmlns:andreid="http://schemas.android. com/apk/res/android™:

<item android:state_pressed="true"><shape:
<s0lid android:coler="@color/red translucent” /:

<stroke android:width="1dp" android:coclor="#9ESESE" />
<padding android:bottom="15dp" android:left="28dp" android:right="28dp" android:top="15dp" />
<corners android:radius="5dp"” />
</shape»</item>
<item><shapes
<solid android:coler="@color/white_translucent™ />
<stroke android:width="1dp" android:color="#9E9E9E" />

<padding android:bottom="15dp" android:left="28dp" android:right="28dp" android:top="154p" />

<corners android:radius="5dp" />
</shapex</item:

</selectors

44

Cole Pandya Btech451 End of Year Report 1506492

button_menu.xml

To select the images and assign them to the states of the buttons, | use a separate .xml file.
First to assign the state where the button is pressed, | assign the corresponding item from
the Drawables folder and the set the state_pressed as true so that it is recognised in the

above .xml files.
<?wml wersion="1.8" encoding="utf-8"7:
¢selector wmlns:android="http://schemas.ondroid. com/apk/res/android”>

<item android:drawable="@drowable/btrn_menu_pressed"” android:state_pressed="true"/>
<item android:drawable="@drawable/btn_menu_normal />

=] @ W s R

</selectors|

oa

button_menu_done.xml

After the pressed state, | apply the done button which is blue. It is similar to the above .xml.

k?xml version="1.8" encoding="utf-8"2>
<selector wmlns:android="http://schemas.android. com/apk/res/android”>

<item android:drawable="@draowable/btn_menu_pressed” android:state_pressed="trues"/:
<item android:drawable="@draowable/btn_menu_done” />

= N WA sl R

<fselectors

Homescreen Layout

activity_main.xml:

This xml file is used to produce the homescreen of the application and all the fields are
encapsulated by a RelativeLayout and this is a view group that displays child views in
relative positions of each view’s position can be specified as relative to sibling elements
(such as to the left-of or below another view) or in positions relative to the parent

RelativeLayout area (such as aligned to the bottom, left of center) (Tamada, 2011).

RelativeLayout lets child views specify their position relative to the parent view or to each
other (specified by ID). In the template, we have used this feature for the different buttons

which would allow alignment of two elements by right border, or make one below another,

45

Cole Pandya Btech451 End of Year Report 1506492

centered in the screen, centered left, and so on. By default, all child views are drawn at the
top-left of the layout (Layout).

Some of the many layout properties available to views in a RelativeLayout include:
android:layout_alignParentTop

If "true", makes the top edge of this view match the top edge of the parent.
android:layout_centerVertical

If "true”, centers this child vertically within its parent.

android:layout_below

Positions the top edge of this view below the view specified with a resource ID.
android:layout_toRightOf

Positions the left edge of this view to the right of the view specified with a resource ID.

The homescreen layout is developed by the activity_main.xml file shown below:

<RelativeLayout xmins:android="http://schemas.android.com/apk/res/android"
xmins:tools="http://schemas.android.com/tools"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="@drawable/background_menu"

tools:context=".MainActivity" >

<TextView
android:id="@+id/title"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_centerHorizontal="true"
android:layout_marginTop="5dp"
android:drawablePadding="10dp"
android:gravity="bottom|center_horizontal"
android:text="@string/app_name"
android:textSize="100sp"
android:textStyle="bold" />

<TextView

46

Cole Pandya Btech451 End of Year Report 1506492

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/title"
android:layout_centerHorizontal="true"
android:layout_marginTop="5dp"
android:gravity="top|center_horizontal"
android:text="@string/app_subtitle"
android:textSize="25sp"
android:textStyle="bold" />

So | begin by adding a few TextViews and this displays text to the user and optionally allows
them to edit it, however | have disabled editing for this application. For example, one of the
TextView contains the text from Strings.xml where the field is called app_name and in this
case the value for that is Picca and we can refer to String.xml for the rest of text

allocations.

<Button
android:id="@+id/stepl_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerVertical="true"
android:layout_toLeftOf="@+id/arrow1"
android:background="@android:colour/transparent"
android:drawableBottom="@drawable/button_menu"
android:text="@string/step1"

android:textColour="@android:colour/secondary_text_light" />

Now | add a Button which represents a push-button widget. Push-buttons can be pressed, or
clicked, by the user to perform an action. The button includes an attribute called
android:id="@+id/stepl_button" and this allows me to refer to it while | want to do
something when the button is clicked etc. The background of the button is set at
Transparent and the image of the button is loaded from Drawables folder and the images

are supplied by Patrice’s template. The rest of the attributes are self-explanatory.

<ImageView

android:id="@-+id/arrow1"

47

Cole Pandya Btech451 End of Year Report 1506492

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignBottom="@id/step1_button"
android:layout_centerVertical="true"
android:layout_tolLeftOf="@+id/step2_button"
android:paddingBottom="5dp"

android:src="@drawable/ic_arrow" />

Since | want to have a “process-flow” appearance of the buttons, | decide to add an arrow
that points from Step 1 button to Step 2 buttons and this is done by using ImageView.
ImageView allows us to display an arbitrary image, such as the ic_arrow icon. The
ImageView class can load images from various sources as well and | used this for the
camera view as well. It can also be used in any layout manager and provides various display

options such as scaling and tinting.

<Button
android:id="@id/step2_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerVertical="true"
android:layout_toLeftOf="@+id/arrow2"
android:background="@android:colour/transparent"
android:drawableBottom="@drawable/button_menu"
android:text="@string/step2"

android:textColour="@android:colour/secondary_text_light" />

Similar to Stepl button, | create a Step2 button which has the same properties as Stepl
except the alignment is to the left of arrow2. Also for the rest of the fields, | have basically
applied the same principle to create “duplicates” with different placements and different Ids.
Also notice the android:drawableBottom="@drawable/button_menu" as this ensures the

colouring of the button.

...Similarly, the rest of the xml file is implemented. See the project folder for the full

class.

</RelativeLayout>

48

Cole Pandya Btech451 End of Year Report 1506492

In the above xml file, the images of the button is loaded from the Drawables folder which
includes all the images the template uses and are easily assigned to fields by using the
following:

android:src="@drawable/ic_arrow"

The ic_arrow is the name of the image from the Drawables folder and we are able to assign
any images to a field as long as it is present in the Drawables folder. The android:text
attribute refers to a part of the String.xml file that consists of all strings in the project.

The graphical output of the activity _main.xml in a 5.4” device is as follows:

Picca

Capture, Modify and Save - all in one.

LOAD IMAGE 1 LOAD IMAGE 2 STEP1 STEP 2 EXIT
i Take Apply
Pictures Filters

Option 1: Load images from location using ‘Load Image 1" and "Load Image 2" buttons AND Click on Step 2 button to
apply filters.

Option 2: Capture images using the Front/Back camera by clicking the "Step 1" button AND Click on "Step 2" button to
apply filters.

49

Cole Pandya Btech451 End of Year Report 1506492

Camera Screen

Activity_camera.xml

After the main screen, we need to have a camera interface where the user is able to use the
camera (Front/Back) and also see the ImageView once the user clicks the Step1 button. In

that case we need a camera activity screen and this is shown below:

Tap to take
the first picture

The Preview represents the image that will be seen by the camera and the user is able to
capture is either using the Camera Button on the Android device or tap the screen (the
programming part is covered later). The above screen is developed using the
activity_camera.xml:

Every field in this screen is encapsulated by a FrameLayout and this layout is designed to
block out an area on the screen to display a single item such as the black areas around the
ImageView shown in the image above. Similarly to activity _main.xml, this screen consists of
ImageView, TextViews and Buttons and the images are loaded from Drawables folder.

50

Cole Pandya Btech451 End of Year Report 1506492

Apply Filter Screen

Activity edit_pictures.xml

After capturing the pictures, the user is then directed to the screen that processes the
images and this is the major focus of the application.

This xml file is used to create multiple layouts encapsulated with many components. In this
layout, | used a LinearLayout which arranges its children in a single column or a single row.
The direction of the row can be set by calling setOrientation() and in my project, | have
used vertical. We can also specify gravity, which specifies the alignment of all the child
elements by calling setGravity() or specify that specific children grow to fill up any remaining
space in the layout by setting the weight member of LinearLayout.LayoutParams. The
default orientation is horizontal.

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmIns:android="http://schemas.android.com/apk/res/android"”
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="@android:colour/black"

android:orientation="vertical" >

<LinearLayout
android:id="@-+id/filter_linear_layout"
android:layout_width="wrap_content"
android:layout_height="fill_parent"

android:orientation="vertical" >

<ScrollView
android:layout_width="wrap_content"

android:layout_height="match_parent" >

After implementing a few buttons, the screen space had run out | had to use a scroll feature
by implementing ScrollView. It is a layout container for a view hierarchy that allows scrolling
by the user, allowing it display more information than screen space. A ScrollView is a

FramelLayout, meaning that | can only place one child in it. Therefore, to display more than

51

Cole Pandya Btech451 End of Year Report 1506492

one Button, | implemented another LinearLayout inside the ScrollView that presenting a
vertical array of top-level items such as Buttons that the user can scroll through.

| had to make sure that | did not use ScrollView with a ListView because ListView takes
care of its own vertical scrolling. Most importantly, doing this defeats all of the important
optimizations in ListView for dealing with large lists, since it effectively forces the ListView
to display its entire list of items to fill up the infinite container supplied by ScrollView

(Views).

There are other options for scrolling, however | used ScrollView because it only supports

vertical scrolling and that’s what | needed for the buttons.

<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"

android:orientation="vertical" >

<Button
android:id="@+id/filterl_button"
android:layout_width="fill_parent"
android:layout_height="0dip"
android:layout_weight="1"
android:background="@drawable/button_white_red_transluscent"
android:text="@string/filterl_text"

android:textColour="@android:colour/white" />

...and the remaining buttons added similarly. See project files for more

details

</LinearLayout>
</ScrollView>

</LinearLayout>

<RelativeLayout

52

Cole Pandya Btech451 End of Year Report 1506492

android:id="@+id/rel_layout"
android:layout_width="fill_parent"
android:layout_height="fill_parent"

android:layout_toRightOf="@id/filter_linear_layout" >

<lmageView
android:id="@+id/filter_image_view"
android:layout_width="fill_parent"
android:layout_height="fill_parent"

android:layout_toRightOf="@id/filter_linear_layout" />

The ImageView is where the image to be filtered is shown on and | wanted to show the
histograms of RGB values on the ImageView by click of a button and therefore | added a

button that would display RGB, save the filtered image and reset back to the original image.

<Button
android:id="@+id/reset_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"
android:layout_alignParentLeft="true"
android:layout_marginLeft="22dp"
android:background="@drawable/button_blue_red_transluscent"
android:text="@string/Reset_text"

android:textColour="@android:colour/white" />

...Similarly, the rest of the class is implemented. See the project folder for more

information.

</RelativeLayout>

</RelativeLayout>

The graphical layout for the activity _edit_pictures.xml on a 5.4” screen looks as follows:

53

Cole Pandya Btech451 End of Year Report 1506492

GrayScale ‘ RGB Histograms

Image Equalization

‘ Modify Hue
Median Filter

Mean Filter Saturation

Contrast Modification

Contrast Stretching Ll
Reverse RGB

Gaussian Filter

Horizontal Edge Detection

Strings.xml

This class holds all the strings | have used in the project. To keep it organized, | have
ensured that it is divided into four parts: Main, Camera and Edit Pictures and Edit Pictures
ImageView. It just helps me keep track of strings and it is easy to go to back to when | want

to edit or add more strings for that section.

<?xml version="1.0" encoding="utf-8"?>

<resources>

<l-- Main -->

<string name="app_name">Picca</string>

<string name="app_subtitle">Capture, Modify and Save - all in one.</string>

<string name="action_settings">Settings</string>

<string name="app_description">Option 1: Load images from location using "Load Image

1" and "Load Image 2" buttons AND Click on Step 2 button to apply filters.

Option 2: Capture images using the Front/Back camera by clicking the "Step 1" button AND
Click on "Step 2" button to apply filters.</string>
<string name="stepl">STEP 1</string>

<string name="stepl_text">Take\nPictures\n</string>

54

Cole Pandya Btech451 End of Year Report 1506492

<string name="step2">STEP 2</string>
<string name="step2_text">Apply Filters\n</string>
<string name="step3">EXIT</string>
<string name="step3_text">Finish\n</string>
<string name="step4">LOAD\nIMAGE 1</string>
<string name="step5">LOAD\nIMAGE 2</string>

<!-- Camera -->

<string name="back">Back</string>

<string name="front">Front</string>

<string name="tap_to_take the_left_picture">\nTap to take\nthe first picture</string>

<string name="tap_to_take the right_picture">\nTap to take\nthe second picture</string>

<string name="info_text_right_picture">\nAlign to take\nthe second picture</string>

<string name="picture_without_camera">A picture cannot be captured without a
camera</string>

<string name="overlay_image_description"></string>

<string name="no_camera_access">Can\'t access the camera.</string>

<string name="reticle">Reticle</string>

<string name="are_you_satisfied_pictures_text">Are you satisfied with these
pictures?</string>

<string name="continue_text">Yes\nContinue</string>

<string name="take_new_pictures_text">No\nTake new pictures</string>

<!-- Edit Pictures -->

<string name="grayscaleText">GrayScale</string>

<string name="imageEqualizationText">Image Equalization</string>
<string name="medianText">Median Filter</string>

<string name="meanText">Mean Filter</string>

<string name="contrastText">Contrast Modification</string>

<string name="brightnessText">Brightness</string>

<string name="reverseRGBText">Reverse RGB</string>

<string name="gaussianText">Gaussian Filter</string>

<string name="hEdgeDetectText">Horizontal Edge Detection</string>
<string name="engraveText">Engrave</string>

<string name="vEdgeDetectText">Vertical Edge Detection</string>
<string name="smoothText">Smoothing</string>

<string name="edgeDetectText">Edge Detection</string>

55

Cole Pandya Btech451 End of Year Report 1506492

<string name="blackText">BLACK bitmap</string>

<string name="colorchannelsText">Modify Colour Channels</string>
<string name="colorincreaseText">Increase Colour</string>

<string name="flipimageText">Flip Image</string>

<string name="hueText">Modify Hue</string>

<string name="messageOnlmageText">Text on Image</string>
<string name="rotateText">Rotate 90 degrees</string>

<string name="roundRectBorderText">Round Rectangle Border</string>
<string name="saturationText">Saturation</string>

<string name="shadinglmageText">Shading Image</string>

<string name="sharpenText">Sharpen</string>

<string name="tintinglmageText">Tint Image</string>

<string name="contrastStretchText">Contrast Stretching</string>

<!-- Edit Pictures ImageView -->

<string name="Save_text">Save</string>

<string name="display_RGB">RGB Histograms</string>
<string name="Reset_text">Reset</string>

<string name="seek_bar_text">SeekBar</string>

</resources>

56

Cole Pandya Btech451 End of Year Report 1506492

EditPicturesActivity.java

As you can see from the previous pages that the activity _edit_pictures.xml file allowed me
to add views, buttons and text fields, however those items do not have any functionalities.

puhllc class EditPicturesActivity extends Activity {

* Tag for Log */
public static Flnal String TAG = "EditPicturesActivity”;
'* Images Path */
private String[] _imagesPath;
/* Original Images */
platected static Bitmap[] _originalBitmaps = new Bitmap[2];
/* Final Filtered Images */
protected static Bitmap[] _filteredBitmaps

new Bitmap[2];

'* Image View ”ﬂ

private ImageView filterImageView;
private String leftImagePath;
private String rightImagePath;

First | begin with a TAG which shows up in LogCat, which basically helps when debugging
the application. Next you can see imagespath, which is used to decode the bitmaps and
load it in the _filterimageView. In Android, to pass strings or string arrays from one activity
to another (in our case from MainActivity to this) we need to use putExtras which | will talk
about in the OnCreate(). Also | have declared 2 arrays of bitmaps; original and filtered.
The original bitmaps represents the un-modified image decoded at the start and the filtered
bitmaps represent the images modified by the filters available in the application. The size of
the Bitmap array is 2 because the camera is used to capture two images and is kept
consistent all throughout the classes. After some discussion with Patrice, we believed that
we should let the camera capture two images just in case the user does not click it properly

the first time and it only takes a second extra to capture the second image.

Next, we need to declare the types of filters to be used for my application. This is a simple
task and can be seen below. | have 20+ filters implemented and a filter called _blackFilter is
to used to test the RGB histogram feature. Once applied, the image goes pure black (RGB
= 0) and when histograms are displayed all values are at 0. Each filter implemented in the

project is explained in detail later in the report.

57

Cole Pandya Btech451 End of Year Report 1506492

'* Filters */

Filter GrayScaleFilter = new GrayScaleFilter();

Filter _EqualizaticonFilter = new HistogramEqualizationFilter();
Filter _MedianFilter = new MedianFilter();

Filter _MeanFilter = new MeanFilter();

Filter _Contrastadjust = new ContrastAdjust();

Filter BrightnessIncrease = new Brightness();

Filter _RewverseRGE = new ReverseRGB();

Filter GaussianBlur = new GaussianBlur();

Filter HorizontalEdgeDetection = new HorizontalEdgeDetection();
Filter Engrave = new Engrave();

Filter VerticalEdgeDetection = new VerticalEdgeDetection();
Filter Smocoth = new Smooth();

Filter EdgeDetect = new EdgeDetect();

Filter _blackFilter = new BlackBitmap();

Filter _colorChannels = new ColorChannels();

Filter _flipImage = new FlipImage()};

Filter _hue = new Hue();

Filter _messageOnImage = new MessageOnImage();

Filter _rotate = new Rotate();

Filter _saturaticn = new Saturation();

Filter _sharpen = new Sharpen();

Filter _tintingImage = new TintingImage();

f/Filter contrastStretch = new ContrastStretch();

Once the declarations are over, the OnCreate() needs to be overridden in which | need to
initialize the activity. Most importantly, here | will call setContentView(int) with a layout
resource defining my Ul for this class, and using findViewByld(int) to retrieve the widgets in
that Ul. The first few lines sort out the window and layout for this class and the intent is used
to receive the _imagesPath array from the MainActivity using getStringArrayExtral().

@override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
gethindow().setFormat(PixelFormat. TRANSLUCENT);
requestiindowFeature(Window. FEATURE NO TITLE);
gethindow().setFlags(WindowManager. LayoutParams. FLAG_FULLSCREEN,

WindowManager. LayoutParams.FLAG FULLSCREEN);

setContentView(R.layout.octivity edit_pictures);

Intent intent = getIntent();

_imagesPath = intent.getStringArrayExtra(MailnActivity.IMAGES PATH);
leftImagePath = intent.getExtras().getString("leftPath");
rightImagePath = intent.getExtras().getString("rightPath™);

58

Cole Pandya Btech451 End of Year Report 1506492

Once we get the _imagesPath from MainActivity we are ready to decode the bitmap which
is located at the _imagesPath. | added an If condition to check whether the path is null and
if that is the case the application will call the finish() (Note: below screenshot is not the
updated version). If the _imagesPath is not null then we can decode the bitmaps located at
the path and load them into the _originalBitmaps. The decodeFile method in my project
uses a file path to locate a bitmap. If the specified file name is null, or cannot be decoded

if (_imagesPath == null) {
// to use with manual locations for images
_originalBitmaps[MainActivity.LEFT_TMAGE] = BitmapFactory
.decodeFile(leftImagePath);
_originalBitmaps[MainActivity .ARIGHT_IMAGE] = BitmapFactory
.decodeFile(rightImagePath);

I else |

for (int i = MainActivity.LlEFT_IMAGE; i <= MainActivity.RIGHT_IMAGE; i++) {
_originalBitmaps[i] = BitmapFactory.decodeFile(_imagesPath[i]);
¥

¥

filterImageView = (ImageView) findViewById(R.id.filter image view);
_filterImageView
.setImageBitmap(_originalBitmaps[MainActivity.LEFT_IMAGE]);

for (int i = MainActivity.LEFT_IMAGE; i <= MainActivity.RIGHT _IMAGE; i++) {
// copying the original image in _filteredBitmaps so that a filter
'/ can
// be applied over and over again
_filteredBitmaps[i] = _eriginalBitmaps[i].copy(
_originalBitmaps[i].getConfig(), true);
h

into a bitmap, the function returns null. The reason why | am using this method to load my
bitmaps is because it loads a ‘mutable’ bitmap which basically means | can modify the

contents of the bitmap.

Once the bitmap is decoded, we need to add it to the _filterimageView.
MainActivity.LEFT IMAGE is a type integer and consists of value 1 and
MainActivity. RIGHT _IMAGE consists of integer value 2. The loop below, copies the original
bitmaps into the bitmaps that are going to be modified using filters and this copy() returns a

mutable bitmap.

After the image is added to the Image View, we can finally start adding functionalities to the
buttons. Majority of the implementations of the buttons are similar because all the
modification of the bitmap is done by extending the Filter class (discussed later in the

report).

First implementation is the GrayScale filter and this is done by creating a button and linking

it to the item on the activity _edit_pictures.xml file by using

59

Cole Pandya Btech451 End of Year Report 1506492

findViewByld(R.id.grayScale_button). Once that is completed we can add the
setOnClickListener which will pass the bitmap to the filter class and this can be seen
below. Once the image is modified we need to again load that image to the Image View so
the user is able to see the modified image.

* GrayScaleFilter */
Button grayScaleButton = (Button) findViewById(R.id.grayScale button);
grayScaleButton. setOnClicklistener(new View.OnClicklistener() {
@override
public woid onClick(View v} {

Log.i(TAG, "GrayScaleFilter™);
for (int 1 = MainActivity.lEFT TMAGE; i <= MalnActivity.RIGHT TMAGE; i++) {

_filteredBitmaps[i] = _GrayScaleFilter
.filterImage(_ filteredBitmaps[i]);
b

_filterImageView
setImageBitmap(_filteredBitmops[MainActivity.LEFT_IMAGE]);
h
I

The filters that do not need user input are implemented similarly to GrayScaleFilter except
the only difference is that the Filter type is changed. | have implemented many filters that
require user to specify value(s) that would determine the degree at which the filter is applied.
Below is an example of ContrastAdjust filter which needs Gain and Bias input from the
user. To do so | have used an AlertDialog to do so and then pass those values to the Filter
class.

* ContrastAdjust */

Button ContrastButton = (Button) findViewById(R.id.contrast_button);
ContrastButton.setOnClicklListener(new View.OnClickListener() {
@override
public woid onClick({View v} {
Log.i(TAG, "ContrastiAdjust™);

popupBiasGain(v);
b
I

The Alert Dialog is pretty simple to use and is similar to requesting user input for Java but in
case the user just gets prompted in an alert window. The message to be displayed for the
user is shown below and | have also given an example of an accepted input. The user is
only able to see a keyboard that looks like below. The problem with just KEYBOARD_12Key

is that it will not let the user type a decimal point and in that case | need to set the input type

60

Cole Pandya Btech451 End of Year Report 1506492

as TEXT. After the input is entered by the user, | need split the input for Bias and Gain using
split() and parse them both.

MoToss

AlertDialog.Builder alert = new AlertDialog.Builder(v.getContext());

alert.setTitle("User Input™);
alert.setMessage("Enter an integer value for Bias between @ and 255 followed by a " +
“double value for Gain between 8.8 and 2.8 separated by a space. For example: 58 1.1");

'/ Set an EditText view to get user input
final EditText input = new EditText(getApplicaticnContext());
alert.setView(input);
input.setRawInputType(Configuration.KEYBOARD I12KEY

| InputType.TYPE_CLASS TEXT);

alert.setNegativeButton(“Cancel”,
new DialogInterface.OnClickListener() {

public void onClick({DialogInterface dialog, int whichButton) {
'/ Canceled.
}

[9F

alert.setPositiveButton("0k", new DialogInterface.OnClickListener() {
public void onClick{DialogInterface dialog, int whichButton) {
String walues = input.getText().toString();
string[] parts = wvalues.split{" ");
String biasString = parts[@];
String gainString = parts[1];
bias = Integer.parseInt(biasString);

gain = Double.parseDouble(gainString);
contrastAdjustFilter(bias, gain);

[F

Once that is completed, the bias and gain values are passed to another method which is
used to update the pixel values. After that the user is prompted of their user input as shown

in the below picture.

61

Cole Pandya Btech451 End of Year Report 1506492

private void contrastfAdjustFilter(int bias, double gain) {
for (int i = MainActivity.LlEFT _IMAGE; i <= MainActivity.RIGHT IMAGE; i++) {

_filteredBitmaps[i] = _ContrastAdjust.filterImage(
_filteredBitmops[i], gain, bias);

h

_filterImageView
.setImageBitmap(_filteredBitmaps[MainActivity.LEFT_IMAGE]);
Toast.makeText(
getdpplicationContext(),
"The RGE walues of the image are altered by multiplying Gain wvalue of ™
+ gain + " and then the Bias wvalue of " + bias
+ " is added to the RGE walues.", Toast.LENGTH LONG)
.show();

Saving the images

Once the user has finished modifying the images using filters, the “Save” allows the user to
save the images in a folder called “Picca”. Once the button is clicked the applyFilter() is
called which uses FileOutputStream to save the images based on the image paths. Next
step is to compress the bitmap (in our case the quality is 100%) and save it in the JPEG
format and then close the stream. A similar method is used for reloading the state of the
Activity after the RGB Histogram button is clicked by the user. Once the user clicks the
RGB Histogram button, the method saves the images at a location and reloads them back
again the ImageView.

private wvoid applyFilter() {
new Thread{new Runnable() {
public wvoid run() {
for (int i = MainActivity.LEFT _IMAGE; i <= MainActivity.RIGHT IMAGE; i++) {
try {
if (_filteredBitmaps[i] !'= null) {
FileOutputStream fos = new FileQutputStream(
new File(imagesPath[i])});
_filteredBitmaps[i].compress(CompressFormat.JPEG,
MainActivity.PICTURE QUALITY, fos);
fos.close();
h
} catch (FileNotFoundException e) {
Log.d(TAG, "File not found: " + e.getMessage());
; catch (IOException e) {
Log.d(TAG, “Error accessing file:
h

+ e.getMessage());
}
}

Fi.start();

62

Cole Pandya Btech451 End of Year Report 1506492

In image processing, JPEG is a commonly used method of lossy compression. The JPEG
abbreviation stands for Joint Photographic Experts Group and there are many reasons why |
am saving images in the JPEG format. First, this format is suitable for images that contain
many continuous colours such as images captured by the camera. Photos are typically
made up of thousands of colours. The JPEG format can handle that many colours as well as
keep the file size to a minimum. The file size might not be as small as a GIF, but the size is
still pretty small compared to other formats for similar quality.

The degree of compression can be adjusted, but trying to decrease the file size will result in
loss of quality and this is why | have kept the quality at 100%.

63

Cole Pandya Btech451 End of Year Report 1506492

Different types of filters - Filter.java

To filter images with supplied input from the user, | need to pass those values as parameter
to the Filter type. To do so, | need to overload the filterimage() with different parameters

and this can be seen in the below picture:

protected Bitmap filterImage(Bitmap image) {
return image;

b

plutected Bitmap filterImage(Bitmap image, int wvalue) {
/! Auto-generated method stub

return image;

}

protected Bitmap filterImage(Bitmap image, double value, int wvaluel) {
return image;

b

protected Bitmap filterImage(Bitmap image, int type, float percent) {
return image;

}

protected Bitmap filterImage(Bitmap bitmap, double red, double green,
double blue) {
Auto-generated method stub
IEtUIﬂ null;

b

pnntected Bitmap filterImage(Bitmap bitmap, String message) {
Auto-generated method stub
IEtUIﬂ null;

b

plutected Bitmap filterImage(Bitmap image, float border) {
/ Auto-generated method stub
IEtUIﬂ image;

This would allow me to create a Filter object in the EditPicturesActivity class by doing the

following:

Filter _MedianFilter = new MedianFilter();

And then | can do the following to modify the image:
_filteredBitmaps[i] = _MedianFilter.filterimage(_filteredBitmaps [i]);

This would pass the image as a parameter to the MedianFilter class which would carry out

the image processing and then return an updated image and load it back to the ImageView.

64

Cole Pandya Btech451 End of Year Report 1506492

Brightness Filter - Brightnessincrease.java

package edit.picture.packages;
import andreoid.graphics.Bitmap;

public class BrightnessIncrease extends Filter {
protected Bitmap filterImage(Bitmap image, int bias) {

int width = image.getWidth();

int height = image.getHeight();

int R, G, B, A;

int[] pixels = new int[width * height];

image.getPixels(pixels, @, width, @, @, width, height);

int index = @;
Bitmap returnBitmap = Bitmap.cregteBitmap(width, height,
Bitmap.Config.ARGE 8588);

The start of Brightnessincrease.java class extends the Filter.java class shows that the bias
and the image are the parameters. The image passed will be the image captured by the
camera whereas the bias is an integer that will be supplied by the user (using AlertDialog
and TextField). The width and height of the image is necessary to process the current
image and create a processed image of the same size. We need a pixel array that would
store all the pixel vales of the current image. The getPixels() returns all pixels of the image
and stores it in the pixel array and this is more efficient than the getPixel() method because

you only need to call it once to get all pixel values.

After | have the width and height, | am able to create a Bitmap; however it will not contain
any pixel data. The important aspect of the createBitmap() is the configuration of the Bitmap
and in this case | have used Bitmap.Config. ARGB 8888 . The ARGB 8888 is used
because each pixel is stored on 4 bytes. Each channel (RGB and alpha or ‘A’ for
translucency) is stored with 8 bits of precision (256 possible values.) This configuration is

very flexible and offers the best quality. It should be used whenever possible.

Next, | would need to span the whole image and change value of each channel on each
pixel value and to do that | need to separate the ARGB values and then add the bias to it
and then combine it back again. | was able to use the compsci373 tutorial to separate each
channel of each pixel. After separating | then added bias to the RGB value and applied a
min() function so that the value does not exceed 255.

65

Cole Pandya Btech451 End of Year Report 1506492

for (int x = 8; % < width; =+4+) {
for (int y = @; y < height; y++) {

/f using the cs373 tutorial pdf I found a way to separate the
// walues of ARGB

(pixels[index] »> 24) & BxFF;

(pixels[index] »> 16) & @xFF;

(pixels[index] »> 8) & @xFF;

pixels[index] & @xFF;

m & 3@ 1=
I

// the algorithm used to apply the brightnessIncrease

// Adjustment by adding a constant offset, or bias b to pixel
/M wvalues of

// an image g to form the new image T :

ffFix; y) =gl yv) + b

/ the following makes sure that if the wvalue of RGBE exeeds 255
[after

/ the addition of the bias then use 255.

Math.min(R + bias, 255);

Math.min(G + bias, 255);

Math.min(B + bias, 255);

i
)
R
G
B

// updates the pixel walues to the new RGB calculations
pixels[index++] = (A << 24) | (R << 16) | (G << 8) | B;

1

returnBitmap.setPixels(pixels, @, width, @, @, width, height);

/{ now the returnBitmap contains the updated values of RGB by using the
// updated pixels[] array.

return returnBitmap;

After changing the RGB values, the returnBitmap (the modified Bitmap) is updated with the

modified values and then returned and can be shown in ImageView.

66

Cole Pandya Btech451 End of Year Report 1506492

Modifying Contrast - ContrastAdjust.java

Contrast enhancements improve the perceptibility of objects in the images by enhancing the
brightness difference between objects and their backgrounds. The term ‘contrast’ refers to
the separation between the darkest and brightest areas of the image. When the contrast is
increased, the separation between the dark and bright areas is also increased which results
in making the shadows darker and highlights brighter. Similarly, decreasing the contrast will
cause the shadows to increase and highlights to decrease.

For this filter | am using a linear contrast increase formula which involves the use of gain
and bias. This class is similar to Brightnessincrease.java and there is a minor difference in

the algorithm and can be seen below:

for (int x = 8; x < width; x++) {

for (int yv = 8; y < height; v++) |
(pixels[index] »»> 24) & @xFF;
(pixels[index] »>> 16) & BxFF;
(pixels[index] »»> 8) & BxFF;

(
A
R
G
B = pixels[index] & 8xFF;

J/Algorithm:

J/ constant gain a and offset, or bias b to pixel values of an
'/ image g to form the new image f: f(x; y) = ag(x; v) + b

'/ Similar to BrightnessIncrease but the RGE wvalues get

J// multiplied by the wvalue of gain and then bias is added to it.
'/ Both of these values will be supplied by user

R = (int) Math.min(gain * R + bias, 255);

G = (int) Math.min(gain * G + bias, 255);

B (int) Math.min(gain * B + bias, 255);
pixels[index++] = (A << 24) | (R << 16) | (G << 8) | B;

This algorithm uses ‘gain’ and ‘bias’ to modify each channel value of each pixel of the
image by multiplying the value of gain to the current RGB values and then adding bias to it.
The min() function is used to make sure the values don’t exceed 255 after modification and

then the returnBitmap is updated and returned.

Increasing contrast and brightness when not needed could also destroy the image. For
example, the distribution of RGB values of the image is already quite even but attempting to
increase the brightness or contrast may cause the values to exceed 255 (when values

exceed 255, | set them to 255) and causing them to increase the frequency of 255

67

Cole Pandya Btech451 End of Year Report 1506492

excessively. A user with some basic knowledge of histograms will be able to aid their
decision making process using my RGB histogram display feature in my project. There is
another way to modify contrast and it is known as linear stretching or contrast stretching and
it is explained in detail in the next page.

68

Cole Pandya Btech451 End of Year Report 1506492

Linear Stretching - ContrastStretch.java

Contrast stretch is another process to modify the contrast of an image. A contrast stretch
improves the brightness differences uniformly across the dynamic range of the image,
whereas tonal enhancements improve the brightness differences in the shadow (dark),
midtone (grays), or highlight (bright) regions at the expense of the brightness differences in
the other regions. This process re-distributes RGB values of an image over a wider or
narrower range of values and in my case | have decided to stretch them from 0 to 255. In my
project, | am using two types of stretch methods, linear/contrast stretching and image
equalization (Spatial Analyst).

Contrast stretching is achieved by the following formula:

Linear stretching uses the following formula:

OUTWAL = (INVAL - INLO) * ({QUTUP-QUTLS)/(INUP-INLD)) + QUTLC
where:

OUTWAL Yalue of pixel in output map

TNWAL Walue of pixel in input map

INLC Lower value of 'stretch from' range

INUF Upper value of 'stretch from' range

QuUTLD Lower value of 'stretch to' range

QUTUP Upper value of 'stretch to' range

When the 'stretch from’ range is specified as values, these are INLO and INUP. These are
the values from the input image and refer to the minimums and maximum of the RGB arrays.
The OUTLO and the OUTUP values are determined by me and they represent the spread of
the new values and | have
]) for (int x = @; x < width; x++) {

decided to just stretch them for (int y = @; y < height; y++) {

A = (pixels[index] »>» 24) & @xFF;
from 0 to 255. The OUTVAL R

G

E

(r[index] - Rmin) (255 - @)
represent the final value after

(b[index] - Bmin) (255 - @)

the stretching. The below
if (R
R

have implemented contrast if (g

stretch filter (Spatial Analyst): if (B
B

255)
255;
255)
255;
255)
255;

image shows part of how |

[[EEE N e

if (R
R
if (6
G
if (B
B

[| A | Y
L g IR g v v
§ i hms e s

)
!/ convert it back

pixels[index] = (& << 24) | (R << 16) | (G << 8) | B;
index++;

69

* / (Rmax - Rmin)) + @
(glindex] - Gmin) * ((255 - @) / (Gmax - Gmin))+ @;
S | / (Bmax - Bmin))+ 8;

>

Cole Pandya Btech451 End of Year Report 1506492

Convert to Grayscale - GrayScale.java

I am implementing a grayscale filter which results in an image which has colours that are
shades of gray. The reason for differentiating such images from any other sort of colour
image is that less information needs to be provided for each pixel. The gray colour is
achieved when RGB components all have the same intensity in the RGB colour space and
this basically means that we need to specify a single intensity value for each pixel as
opposed to three.

Grayscale images are common in world of imaging; however the camera feature on a device
captures the image in colour. Therefore, the user has to manually convert the image to
Grayscale using desktop applications but Picca has a grayscale filter that sets the saturation
to 0 by using the setSaturation() and a value of 0 maps the colour to gray-scale and 1 is

identity.

package edit.picture.packages;
‘import android.graphics.Bitmap;[]
public class GrayScaleFilter extends Filter {

@override

protected Bitmap filterImage(Bitmap image) {
int width, height;
height = image.getHeight();
width = image.getWidth();

Bitmap bmpGrayscale = Bitmap.createBitmop(width, height, Bitmap.Config.RGB_565);
Canvas ¢ = new Canvas(bmparayscale);

Paint paint = new Paint()};

ColorMatrix cm = new ColorMatrix();

cm. setSaturation(@);

ColorMatrixColorFilter f = new ColorMatrixColorfFilter(cm);
paint.setColorFilter(f);

c.drawBitmap(image, ®, @, paint);

return bmpGrayscale;

70

Cole Pandya Btech451 End of Year Report 1506492

Histogram Equalization Filter - HistogramEqualization.java

Histogram equalization is also referred to as Image Equalization and used on images that
looks plain and lacks contrast. This algorithm is also available in the desktop application
called Photoshop when the user clicks the “quick fix” button. My goal was to implement it on
a mobile platform so it can be used with portable android devices.

A histogram is a graph of a sort that plots the frequency at which each grey level occurs from
0 (black) to 255 (white) (in black and white images). | am familiar with this algorithm and
have implemented it for Grayscale images in one of my previous courses however, that
same algorithm would not work in my case because the camera captures images with
colour. With colour images, | need to plot the frequency of Red, Green and Blue levels of the
images. In images that have “poor contrast” (when maijority of frequencies lie in the middle of
histogram), histogram equalization fixes these (Gimelfarb & Delmas, Part 3: Image

Processing: 3.1. Digital Images and Intensity Histograms).

The primary goal of this algorithm is to obtain a uniform histogram. So suppose if | capture
an image and if it has areas that have peak frequencies, even after the histogram
equalization there will still be areas with peaks but they will be shifted. In simple words, the
existing values will be mapped to new values but the actual number of intensities in the

resulting image will be equal to or less than the original number of intensities.
Histogram equalization can be done in three steps:

e compute histogram,
e calculate the normalized sum of the histogram,

¢ transform input image to output image

So | created a method called imageHistogram that starts off with getting each pixel value
of the image. As mentioned before in my report, each pixel value contains three colour
channels, RGB and then | increase the values of the colours in the table (Gimelfarb &

Delmas, Part 3: Image Processing: 3.1. Digital Images and Intensity Histograms).

71

Cole Pandya Btech451 End of Year Report 1506492

public static ArraylList<int[]> imageHistogram(Bitmap image) {

int red, green, blue;

int[] histoR = new int[256];

int[] histoG = new int[256];

int[] histoB = new int[256];

for (int i = @; i < histoR.length; i++)
histoR[i] = ©;

for (int i = @; i < histoG.length; i++)
histoG[i] = ©;

for (int i = @; i < histoB.length; i++)
histoB[i] = ©;

for (int x = @; x < image.getWidth(); x++) {
for (int y = @; y < image.getHeight(); y++) {

red = Color.red(image.getPixel(x, y));
green = Color.green(image.getPixel(x, y));
blue = Color.blue(image.getPixel(x, y));

Increase the values of colors
histoR[red]++;
histoG[green]++;
histoB[blue]++;

}

Arraylist<int[]> hist = new ArrayList<int[]>();
hist.add(histoR);
hist.add(histoG);
hist.add(histoB);

return hist;

Next | had to calculate the normalized sum and this is the part where | had difficulty getting it
right. After researching many types of resources | was able to find a similar example to mine.
The below method calculates the cumulative distribution function which is also the images
accumulated normalized histogram. Then | call the method created before to get the
histogram. After that | created a LUT which would correspond to each colour in our RGB
channel and then I fill the table with O’s to calculate the scale factor. The next step would be
to go through a loop in which the value of the current pixel needs to be added to the sum.
The new value is calculated by multiplying the sum with the scale factor and similar to other
filters, if the sum exceeds 255 then 255 is used in its place (Gimel'farb & Delmas, Part 3:

Image Processing: 3.1. Digital Images and Intensity Histograms).

72

Cole Pandya Btech451 End of Year Report 1506492

!/l Get the hisvogram equalization lockup table for zeparate R, G, B channels
private static Arraylist<int[]> BitmapEqualization(Bitmap input) {

// Get an image hizvogram - calculated values by R, G, B chanmels
ArraylList<int[]> imageHist = imageHistogrom(input);

// Create the lockup table
ArrayList<int[]> imagelUT = new ArrayList<int[]»();

// Fill the lookup table

int[] histoR = new int[256];
int[] histeG = new int[256];
int[] histoB = new int[256];

for (imt & = 8: i < histeR.length: i++)
histeR[1i] = @;

for (int i = @; i < histoG.length; i+4)
histoG[i] = @;

for (int i = @; 1 < histoB.length; i++)
histoB[i] = @;

long sumr = 8;

long sumg = &;

long sumb = &;

// Calculate the scale factor
float scale_facter = (float) (255.8 / (input.getWidth() * input
.getHeight()));

for (int i = 9; i < histoR.length; i++) {
sumr += imageHist.get(@)[i];
int valr = (int) (sumr * scale_factor);

// if it doesnt match Imagel try the following
// int yalr = (int) (Math.sqrt(sumr * scale_factor));
if (valr > 255) {
histoR[i] = 255;
} else
historR[i] = valr;

sumg += imageHist.get(1)[i];
int valg = (int) (sumg * scale_factor);
// if it doesnt match Image) try the following
// int valG = (int) (Math.sqrt(susg * scale_factor));
if (valg > 255) {
histoG[i] = 255;
} else
histoG[i] = valg;

sumb += imageHist.get(2)[i];
// if it doesnt match Image) try the following
// int yalb = (int) (Math.sqrt(sumb * scale_factor));
int valb = (int) (sumb * scale_factor);
if (valb » 255) {
histoB[i] = 255;
} else
histoB8[i] = valb;
}

imagelUT,.add(histoR);
imagelUT.add(histoG);
imagelUT.add(histoB);

return imagelUT;

73

Cole Pandya Btech451 End of Year Report 1506492

The last part that | need to do is just call the method for equalization, create a new image
and set the new pixel values. This can be achieved by the following method:

protected Bitmap filterImage(Bitmap image) {

int width = image.getwidth();
int height = image.getHeight();
int red:

int green;

int blue;

int alpha;

int newPixel = @;

{/{ Get the Lookup table for histogram equalization
ArrayList<int[]> histLUT = BitmapEqualizotion(image);

Bitmap returnBitmap = Bitmap.createBitmap(width, height,
Bitmap.Config.ARGE_BEER);

for (int x = @; x < width; x++) {
for (int y = @; y < height; y++) {

// Get pixels by R, G, B

alpha = Color.alpha(image.getPixel(x, y));
red = Color.red(image.getPixel(x, y));
green = Color.green(image.getPixel(x, y));
blue = Color.blue(image.getPixel(x, y));

/ Set new pixel values using the histogram lookup table
red = histLUT.get(0@)[red];
green = histlUT.get(1)[green];
blue = histLUT.get(2)[blue];
// Return back to original format
newPixel = colorToRGB(alpha, red, green, blue);

/ Write pixels into image
returnBitmap.setPixel(x, y, newPixel);

74

Cole Pandya Btech451 End of Year Report 1506492

Drawing histogram using View - DrawHistograms.java

Filter like Histogram Equalization modifies the colour values of RGB and maps them evenly.
This feature allows user to see the distribution of the RGB values as separate histograms
regardless of which filter is applied and this is an important feature because it can give an
indication to which filter the user must apply. For example, a user has captured an image
that has majority of values distributed on the left hand side of the histogram which means
that the image is dark and this could indicate a few options of filters such as Histogram
Equalization, Brightness Increase, Contrast Adjust and so on. To draw the histograms, | am
extending the View class and using onDraw() of Canvas to draw everything on the screen.

public class DrawHistograms extends View {
Bitmap mBitmap;
Paint paintBlack;
Paint _paintWhite;
Paint paintRed;
Paint paintGreen;
Paint paintBlue;
byte[] m¥UWData;
int[] mRGBData;
int mImageWidth, mImageHeight;
int[] mRedHistogram;
int[] mGreenHistogram;
int[] mBlueHistogram;
double[] mBinSquared;
Paint paint = new Paint();

First, | need to declare the bitmap that will be used to calculate the RGB histograms and also
the Paint components which will be the colour of the font and histograms. To keep it simple |
have kept the colours of RGB histograms as red, green, and blue respectively. Also to store
the data of RGB values | need to create separate integer arrays so that the histograms have
data to be mapped. Next, | need to initialize the paint components with the colour, fill and
font size that will be drawn on the Canvas (ViewFinderEE368). The below image shows how
this is done and is self-explanatory of what is being done. The RGB histogram arrays are set

to size 256 because of the range of colour values 0-255.

public DrawHistograms(Context context) {
super(context);

_paintRed = new Paint();
_paintRed.set5tyle(Paint.Style.FILL);
_paintRed.setColor({Color.RED);
_paintRed.setText5ize(25);

_paintGreen = new Paint();
_paintGreen.setStyle(Paint.Style.FILL);
_paintGreen.setColor(Color.GREEN) ;
_paintGreen.setTextSize(25);

_paintBlue = new Paint();
_paintBlue.setStyle(Paint.5tyle.FILL);
_paintBlue.setColor(Color.BLUE);
_paintBlue.setTextSize(25);

75

Cole Pandya Btech451 End of Year Report 1506492

_paintBlack = new Paint();
_paintBlack.setStyle(Paint.S5tyle.FILL);
_paintBlack.setColor({Color.BLACK) ;
_paintBlack.setText5ize(25);

_paintkWhite = new Paint();
_paintWhite.setStyle(Paint.5tyle.FILL);
_paintWhite.setColor(Color.WHITE);
_paintlWhite.setTextSize(25);

mBitmap = null;

myYUvData = null;

mRGEData = null;

mRedHistogram = new int[256];

mGreenHistogram = new int[256];

mElueHistogram = new int[256];

mBinSquared = new double[256];

for (int bin = @; bin < 256; bin++) {
mBinsquared[bin] = ((double) bin) * bin;

v // bin

In this case, we are dealing with two colour spaces, RGB and YUV. The reason | need to
use this is because it encodes a colour image or video taking human perception into
account. This means that the bandwidth for the chrominance components is reduced
resulting in masking errors such as transmission errors or compression artifacts as
compared to the RGB format. The conversion from YUV to RGB is called
‘decodeYUV420SP’ (ViewFinderEE368) and the conversion from RGB to YUV is called
‘encodeYUV420SP’. Understanding the conversion is slightly complicated and is out of
scope for my project which is why | used pre-defined conversion methods widely available
from the internet to avoid errors in calculations and can be found in the project class (Pratt,
2007).

static public void doIntensityHisto(int[] rgb, int[] histogram, int width,
int height, int histogramType) {
for (int bin = @8; bin <« 256; bint+) {
histogram[bin] = @;

Y // bin
if (histogramType == @) // red
1

for (int pix = @; pix < width * height; pix++) {
int pixelvalue = (rgb[pix] >> 18) & exff;
histogram[pixelValue]++;

Y/ opix
} else if (histogramType == 1} // green
1
for (int pix = ©; pix < width * height; pix++) {
int pixelvalue = (rgb[pix] »»> B) & axff;
histogram[pixelValue]++;
Y/ opix
} else // blue
1
for (int pix = @; pix < width * height; pixt+) {
int pixelvalue = rgb[pix] & @xff;
histogram[pixelValue]++;
Y/ opix
}

Cole Pandya Btech451 End of Year Report 1506492

Above method calculates the intensities of each colour channel and then increments the
histogram.

At the moment, you can notice that the mBitmap is kept null and the basically everything
works only if the mBitmap is kept null. This is because | will initialize the RGB data, YUV
data and the Bitmap in another class when the surface is created and as | mentioned before,
this class is used as a blueprint for the final product. | want to cover the full screen for this
feature because the histograms will be quite large and it would be difficult to get all the data
displayed in small screen space. The canvas dimensions are gathered to be used later and
also the decoding of YUV to RGB needs to be done at the start. Once that is completed the
intensities of the histograms are calculated and stored in their respective histogram arrays

and all this can be seen below (Canvas and Drawables).

protected void onDraw(Canvas canvas) {
if (mBitmap != null) {

int canvasWidth = canvas.getWidth();

int canvasHeight = canvas.getHeight();

int newImageWidth = canvasWidth;

int newImageHeight = canvasHeight;

int marginkidth = (canvasWidth - newImageWidth) / 2;

!/ Convert from YUV to RGB
decodeYUV4205P (mRGEData, myUWData, mImageWidth, mImageHeight);

// Calculate histogram

doIntensityHisto(mRGBData, mRedHistogram, mImageWidth,
mImageHeight, @);

doIntensityHisto(mRGEData, mGreenHisteogram, mImagelWidth,
mImageHeight, 1);

doIntensityHisto(mRGBData, mBlueHistogram, mImageWidth,
mImageHeight, 2);

The dolntensityHisto must be called thrice because of the 3 colour channels but for this to
work all the variables need to be initialized and this is done in another class which | have
included later. The next step would be to calculate the mean and standard deviation and this
is where it got tricky to implement and after a few days of researching online and it is easy to
source algorithms for mean and standard deviations. After the mean and SD calculations, |
need to display the mean and SD on the canvas for the user to see. So | use the
canvas.drawText() which takes the string, float x, float y and paint components as
parameters. This basically means that the text is drawn with the origin at (X, y), using the
specified paint and in this case it is the white font colour. Keep in mind that the background
is black. Next the intensity histograms are drawn using Rect object and that can be found in

my project folder.

77

Cole Pandya Btech451 End of Year Report 1506492

Previewing RGB histograms - Preview.java

In the last couple of pages | discussed about the blueprint of drawing histograms and to
draw the histograms | need to initialize the bitmap, RGB and YUV data arrays and so on. |
am using a class called Preview.java which extends SurfaceView and implements
SurfaceHolder.Callback. Usually SurfaceView is used with developing games but |
decided to use it with my project as it was a simple implementation without any complexity
(Sharma).

public class Preview extends SurfaceView implements SurfaceHolder.Callback {
surfaceHolder mHolder;

DrawHistograms mDrawHistograms;
boolean mFinished;

Preview(Context context, DrawHistograms drawOnTop) {
super(context);

mDrawHistograms = drawOnTop;
mFinished = false;

{ Install a SurfaceHolder.Callback so we get notified when the
'/ underlying surface is created and destroyed.
mHolder = getHolder();
mHoclder.addCallback({this);
mHzlder. setType (SurfaceHolder. SURFACE_TYPE_PUSH BUFFERS);

Now you will notice that the Constructor has Context as well as DrawHistograms as the
parameters and that is because | need to initialize everything here and can also use it as

shown below in my EditPicturesActivity.java class.

// Create our Preview view and set it as the content of our
f/ activity.
// Create our DrawldnTop view.
mDrawHistograms = new DrawHistograms(getdpplicationContext());
mPreview = new Preview(getfApplicationContext(), mDrawHistocgrams);
setContentView(mPreview);
addContentView(mDrawHistograms, new LayocutParams(
LayoutParams. WRAP_CONTENT, LayoutParams.hiRAP_CONTENT));

Next, | need to initialize everything when the surface is created and not before. Since | have
implemented SurfaceHolder interface, | have implemented a method called
surfaceCreated(SurfaceHolder) because this is called at least once when | make changes.

First | need to gather the image dimensions from the EditPicturesActivity so that | can

78

Cole Pandya Btech451 End of Year Report 1506492

declare the size of mRGBdata array and this can be seen below. Next | need to get pixel
values (and store it in the mRGBdata array) of the image | want the histograms to be drawn
for and this can get done by getPixels(). Next, | update the mBitmap in the
DrawHistograms class by the setPixels() and updating it by the values using the mRGBdata
array.

public void surfaceCreated(SurfaceHolder holder) {
mDrawHistograms.mImageWidth = EditPicturesActivity. filteredBitmaps[@]
.getlWidth();
mDrawHistograms.mImageHeight = EditPicturesActivity._ filteredBitmaps[@]
.getHeight();
mDrawHistograms.mRGEData = new int[mDrawHistograms.mImageWidth
* mDrawHistograms.mImageHeight];

EditPicturesActivity._filteredBitmaps[@].getPixels(mDrawHistograms.mRGBData, @,
mDrawHistograms.mImageWidth, @, @, mDrawHistograms.mImageWidth,
mDrawHistograms.mImageHeight);

mDrawHistograms.mBitmap = Bitmap.cregteBitmap(mDrawHistograms.mImageWidth,
mDrawHistograms.mImageHeight, Bitmap.Config.ARGE _B8EE);

mDrawHistograms.mBitmap.setPixels(mbrawHistograms.mRGBData, @,
mDrawHistograms.mImageWidth, @, @, mDrawHistograms.mImageWidth,
mDrawHistograms.mImageHeight);

mDrawHistograms.mYUVData = new byte[mDrawHistograms.mImagelidth
* mDrawHistograms.mImageHeight * 3 / 2];

DrawHistograms.encodeYUV4285P (mDrawHistograms . myYUvVData, mDrawHistograms.mRGBData,
mDrawHistograms.mImageWidth, mDrawHistograms.mImageHeight);

invalidate();

The problem | had during this process was finding the size of the YUV array and after some
research | was able to find a solution that works. The encodeYUV420SP() is also found at

the same resource http://stackoverflow.com/questions/5960247/convert-bitmap-array-to-yuv-

ycber-nv21. Even though all the values are updated in the Preview class, | still call invalidate

and this forces the view to draw.

79

http://stackoverflow.com/questions/5960247/convert-bitmap-array-to-yuv-ycbcr-nv21
http://stackoverflow.com/questions/5960247/convert-bitmap-array-to-yuv-ycbcr-nv21

Cole Pandya Btech451 End of Year Report 1506492

Median Filter - MedianFilter.java

I have implemented Median Filter as one of the filters used for noise reduction on the
captured image. This type of implementation is non-linear and we can use noise reduction
prior to further image processing (pre-processing) so that the end image is free of noise
when you use a filter like Edge Detection.

Basically the idea of a median filter is to iterate through the image pixels and replacing the
pixel values with the median of the neighbouring entries. This is achieved by the help of a
“‘window” which slides along the whole image and to keep things simple, | have used a box

pattern of window (3x3 square box window) (Vandevenne, 2004).

Just like Image Equalization, this process takes a while to filter the image as the each entry
of the image must be processed and the window slides and repeats. This brings me to Edge

Preservation during the median filtering process.

As mentioned, median filtering is already a slow process and preserving the edges would
take more processing time and therefore | decided not to process edges. This would also
yield the most accurate results as padding edges with values do tend to give inaccurate
results and also there are many padding options. With the image being so large and the
window size being only 3, | decided to not preserve edges because they would only slow

down the process and would be a feasible option only if the image was small and the
'/ no padding neccessary
for (int x = size / 2; x « width - (size / 2); x+) {

for (int y = size / 2; y < height - (size / 2); yv++) {

int index = @;

for (int filterX = -filterWidth / 2; filterX <= filterWidth / 2; filterX++) {
for (int filter¥Y = -filterHeight / 2; filterY <= filterHeight / 2; filter¥++) {

A = (pixels[x + filterX + (width) * (y + filter¥)] >> 24) & BOxFF;
R = (pixels[x + filterX + (width) * (y + filter¥Y)] »»> 18) & @xFF;
G = (pixels[x + filterX + (width) * (y + filter¥)] »»> B) & BxFF;
B = pixels[x + filterX + (width) * (y + filterY)] & @xFF;
RArray[index] = R;

GArray[index] = G;

Barray[index] = B;

++index;

b
h
Arrays.sort(RArray);
Arrays.sort(GArray);
Arrays.sort(BArray);

medianR = RArray[RArray.length / 2];
medianG = GArray[GArray.length / 2];
medianB = BArray[BArray.length / 2];

changes were visible after application. Below is the algorithm for median filtering that does

80

Cole Pandya Btech451 End of Year Report 1506492

not involve preserving the edges. The first two for loops are for iterating through each pixel
value and the other two for loops take care of the sliding window through the image. The last
part sorts the arrays of RGB values and then selects the median value (Vandevenne, 2004).

Currently, the size of the window is odd (3x3) but if in the future you change to an odd
window size such as 4x4 then there is a problem selecting the median value. In that case |
have added the following code to process even window sizes (Vandevenne, 2004).

'/ take the median, if the length of the array is ewven,
// take the average of both center wvalues
if ((filterWidth * filterHeight) % 2 == 1) {
RResult[x][y] = medianR;
GResult[x][y] = medianG;
BResult[x][y] = medianB;

b else if (filterWidth »= 2) {
RResult[=x][v] (RArray[RArray. length / 2] + RArray[RArray.length / 2 + 1]) / 2;
GResult[x][v] (GArray[GArray.length / 2] + GArray[GArray.length / 2 + 1]) / 2;
BResult[x][v] (BArray[BArray.length / 2] + BArray[BArray.length / 2 + 1]) / 2;

¥

RResult[x][y];
GResult[x][y];
BResult[x][y];

tempR
temp
tempb

returnBitmap.setPixel(x, y, Color.argb(f, tempR, tempG, tempB));

In my project, | have added a few noise removing filters such Gaussian Blur but each filter is
applicable to certain scenarios. For small to moderate level of noise, the median filter is

demonstrably better than Gaussian blur at removing noise even with preserving edges.

However, the Gaussian blur performs better for high levels of noise but majority of times, the
image only has speckle noise or pepper noise and so median filter is recommended for that

particular instance.

81

Cole Pandya Btech451 End of Year Report 1506492

Camera Image flipping - Fliplmage.java

In many cases, the camera does not flip image correctly and the image looks off. This filter
allows the user to flip the image vertically or horizontally through user input. The camera
package in my project makes sure that the image is flipped accordingly to the device but it
cannot include all devices which is why it is essential to implement this filter so that the user
can manually change the image.

if(type == FLIP VERTICAL) {
iy =y * -1
matrix.prescale(l.8f, -1.8f);
h
Jf it horizonal
else if{type == FLIP HORIZONTAL) {
fx=x%* -1
matrix.prescale(-1.8f, 1.8f);
// unknown type
} else {
return null;

h
The prescale() preconcats the matrix with the specified scale. M' = M * S(sx, sy) and in this

case the image is flipped vertically using the negative ‘y’ value and the opposite for

horizontally using the negative ‘X’ value.

82

Cole Pandya Btech451 End of Year Report 1506492

Tinting Image - Tintinglmage.java
While researching, I came across an interesting algorithm here:
http://www.developer.com/ws/android/programming/Working-with-Images-in-Googles-

Android-3748281-2.htm that tints images according to input level. It is difficult to understand

the complete algorithm. But basically, each pixel is tinted using an angle in degrees and after
the process is finished all the pixels are ensured to stay within the 0-255 range.

Writing message on the image - MessageOnimage.java

Sometimes, when sending images through email or other means, the only way to keep it
from copied and used in any matter, we watermark it. For my project, | have implemented a
filter that will place text on top of the captured image. | could use a design of some sort to
watermark it but it would not be useful for all applications such as sending the same image
from multiple entities as each entity would have a different watermark. Hence, some text on
the image would make it unique as well as provide control to the user as to what will appear
on the image. In many cases, the user can write a message on the same such as “The water
is leaking through this location” instead of explaining it to the party on the other end through

descriptive messages.

protected Bitmap filterImage(Bitmap image, String message) {
int w = image.getWidth();
int h = image.getHeight();
Bitmap returnBitmap = Bitmap.createBitmap(w, h, image.getConfig());
int size = 25;
boolean underline = true;
int alpha = 288;

Point position = new Polnt(image.getWidth()/2 , image.getHeight()/2);

Canvas canvas = new Canvas(returnBitmap);
canvas.drawBitmap(image, @, @, null);

Paint paint = new Paint();

paint.setColor(Color.WHITE);

paint.setAlpha(alpha);

paint.setTextSize(size);

paint.setfAntiAlias(true);
paint.setUnderlineText(underline);
canvas.drawText(message, position.x, poesition.y, paint);

return returnBitmap;

83

http://www.developer.com/ws/android/programming/Working-with-Images-in-Googles-Android-3748281-2.htm
http://www.developer.com/ws/android/programming/Working-with-Images-in-Googles-Android-3748281-2.htm

Cole Pandya Btech451 End of Year Report 1506492

The approach for this filter is quite different to previous filters because in this filter, we do not
need to iterate through each pixel value, instead we use the Canvas feature for Android.
First we get the image Width and Height and create the bitmap using those values. Then we
define the text size of the watermark. Then we create the bitmap on the Canvas using
drawBitmap. Once that is completed, we create a Paint object and this is used to hold the
style and colour information about the text to be displayed on the image. The position of the
text can be modified but at the moment | have kept it in the center of the image.

‘Inverting’ colours - ReverseRGB.java

Inverting colour is a feature offered by Photoshop and as the name suggests, it inverts the
values of each pixel value and its colour channel. There are a couple of uses for this filter,
one of them being making an edge mask to apply sharpening and other adjustments to
selected areas of an image and the second use is for visually impaired people who cannot

see certain detail in the image that they are able to see after applying this filter.

When you invert an image, the brightness value of each pixel in the channels is converted to
the inverse value on the 256-step colour-values scale. For example, a pixel in a positive
image with a value of 255 is changed to 0, and a pixel with a value of 5 is changed to 250.
The algorithm can be seen below (Gimelfarb & Delmas, Part 3. Image Processing: 3.1.

Digital Images and Intensity Histograms).

for (int % = 8; x < width; =) {
for (int y = 8; v < height; y++) {
pixel = image.getPixel(x, v);

A = (pixel »>> 24) & BxFF;
R = (pixel »>»> 18) & BxFF;
G = (pixel »>> 8) & BxFF;
B = pixel & @xFF;
tempR = 255 - R;
tempG = 255 - G}
tempE = 255 - E;

returnBitmap.setPixel(x, y, Color.argb(&, tempR, tempG, tempB));

84

Cole Pandya Btech451 End of Year Report 1506492

Saturation and Hue Filter - Saturation.java and Hue.java

HSV colour scale stands for Hue, Saturation and Value. Saturation is a feature available in
many desktop image processing applications and is widely used to modify images (Hue,
Value, Saturation). In my project, | will be implementing saturation algorithm using HSV
colour space. The HSV[1] will be used for saturation and HSV[0] will be used for Hue. The
pixels are converted to HSV colour space after iteration and then multiplied by the saturation
level which is basically the intensity of saturation algorithm. The level will be supplied by the
user and this is further explained in EditPicturesAcitivty.java. Once the HSV calculation is
done, the HSV is converted back to colour to store in the pixel array.

public class Saturation extends Filter {
protected Bitmap filterImage(Bitmap image, int lewvel) {

int width = image.getWidth();

int height = image.getHeight();

int[] pixels = new int[width * height];

float[] HSV = new float[3];

// get pixel array from image

image.getPixels({pixels, @, width, @, @, width, height);

int index = 8;
J// iteration through pixels
for (int y = 8; y < height; ++y) {
for (int x = 8; x < width; +Hx) {
'/ get current index in 2D-matrix
index = y * width + x;
'/ convert to HSV
Color.colorToHSV(pixels[index], HSV);
'/ increase Saturation lewel
H5V[1] *= lewvel;
H5V[1] = (float) Math.max(@.8, Math.min{HSV[1], 1.@));
'/ take cplor back
pixels[index] |= Coler.HSVToColor(HSV);
¥
h
f/ output bitmap
Bitmap returnBitmap = Bitmap.createBitmap(width, height,
Bitmap.ConTig.ARGE_BEEE);
returnBitmap.setPixels{pixels, @, width, @, @, width, height};
return returnBitmap;

85

Cole Pandya Btech451 End of Year Report 1506492

Hue is the wavelength within the visible-light spectrum at which the energy output from a
source is greatest. In basic words, it refers to a tone of colour but it is not another name for
colour as it can have saturation and brightness as well as hue. The code is similar to
Saturation.java however, the HSV array value points to location O for Hue and 1 for

Saturation.

import andreid.graphics.Bitmap;
public class Hue extends Filter {
protected Bitmap filterImage(Bitmap image, int lewel) {

int width = image.getWidth();

int height = image.getHeight();

int[] pixels = new int[width * height];
float[] HSV = new float[3];

image.getPixels(pixels, @, width, &, @, width, height);

int index = @;
J// iteration through pixels
for (int y = @; y < height; ++y) {
for (int x = 8; x < width; ++x) {
'/ get current index in 2D-matrix
index = y * width + x;
'/ convert to HSV
Color.colorToHSV{pixels[index], HSV);
/! increase Saturation level
H5V[@] *= lewvel;
HsV[@] = (float) Math.max(®.8, Math.min(HSV[@], 360.8));
'/ take color back
pixels[index] |= Color.HSVToColor(HSV);
h
b
// output bitmap
Eitmap returnBitmap = Bitmap.createBitmap(width, height,
Bitmap.Config.ARGE B888);
returnBitmap.setPixels(pixels, 8, width, @, @, width, height);
return returnBitmap;

86

Cole Pandya Btech451 End of Year Report 1506492

Modifying RGB colour channels — ModColourRGB.java

This class allows each RGB values to be multiplied by a double and is a quick and
responsive filter. It has been implemented in a similar way to Brightness.java and
ContrastAdjust.java. The heart of the algorithm is shown below and the red, green and blue
values are user input through Alert Dialog.

for (int x = 8; % < width; =++) {

for (int y = @; y <« height; v++) {
f using the cs373 tutorial pdf I found a way to separate the
f values of ARGB

A = (pixels[index] »>> 24) & 8xFF;
R = (pixels[index] »> 16) & @xFF;
G = (pixels[index] »> 8) & BxFF;
B = pixels[index] & @xFF;

R = (int) (R * red);

G = (int) (G * green);

B = (int) (B * blue);

// updates the pixel walues to the new RGE calculations
pixels[index++] = (A << 24) | (R << 16) | (@ << 8) | B;

h
Reusability of code - ConvolutionMat.java
After discussing this project some more with my supervisor, he believed that | should

consider some reusability of code to design new filters and after some research | was able to

find Convolution example at http://lodev.org/cgtutor/filtering.html.l have used that to create

my own Convolution Matrix algorithm that will help me design custom 2D filters. The idea is
that for every pixel of the image, take the sum of the products and each product is the colour
value of the current pixel or a neighbour of it, with the corresponding value of the filter matrix.
The center of the filter matrix has to be multiplied with the current pixel, the other elements of

the filter matrix with corresponding neighbour pixels (Vandevenne, 2004).

87

http://lodev.org/cgtutor/filtering.html

Cole Pandya Btech451 End of Year Report 1506492

package edit.picture.packages;
‘import android.graphics.Bitmap;[]
public class ConvoluticonMat extends Filter {
public static final int 5IZE = 3;
public double[][] Matrix;
public double Factor = 1;
public double Offset = 1;
public ConvolutionMat(int size) {

Matrix = new double[size][size];
h

public void setAll(double wvalue) {
for (int x = @8; % < 5IZE; ++x) {
for (int y = @; y < SIZE; ++y) {
Matrix[x][y] = wvalue;
¥

h
public void applyConfig(double[][] config) {
for{int x = 8; x < SIZE; Hx) {
for({int v = @; y < 5IZE; ++y) {

Matrix[x][y] = config[=x][v]

If I am going to use Convolution Matrix to design many filters then | would need to make it
re-usable and this can be achieved by adding the above methods which allows the user to
set a value in a kernel matrix, set ALL values in kernel matrix and copy the kernel into the
Matrix[][] which would be used to carry out the calculations (shown later). When creating
filters, | mostly use the applyConfig() as | define the kernel in another class and | will explain

this later with source code of a filter designed using Convolution Matrix (Vandevenne, 2004).

The filters | am using with convolution are quite simple and majority of them use 3x3 kernel
but creating complex filters such as Coloured Pencil in Photoshop are also possible but they

are not included in this project.

88

Cole Pandya Btech451 End of Year Report 1506492

public static Bitmap computeConvolution(Bitmap src, ConvolutionMat matrix) {
int width = src.getWidth();
int height = src.getHeight();
Bitmap returnBitmap = Bitmap.createBitmap(width, height,
Bitmap.Config.ARGE _S888);

int A, R, G, B;
int sumR, sumG3, sumB;
int[][] pixels = new int[SIZE][SIZE];

for{int y = @; y < height - 2; ++y) {
for{int x = 8; x <« width - 2; +Hx) {
// get pixel matrix
for(int i = @8; i ¢ 5IZE; Hi) {
for(int j = @; j <« 5IZE; ++j) {
pixels[i][j] = src.getPixel(x + i, v + j);

¥

A = Color.alpha(pixels[1][1]);
sumR = sumG = sumB = 8;

// get sum of RGE on matrix
for(int 1 = @; i ¢ 5IZE; ++i) {
for(int j = @; j < SIZE; ++j) {]
sumR += (Color.red(pixels[i][j]) * matrix.Matrix[i][]]);
sumG += (Color.green(pixels[i][j]) * matrix.Matrix[i][j]);
sumB += (Color.blue(pixels[i][j]) * matrix.Matrix[i][j]);

¥

R = (int)(sumR / matrix.Factor + matrix.0ffset);
if(R < @) { R =8; }

else if(R » 255) { R = 255; }

G = (int)({sumG / matrix.Factor + matrix.O0ffset);
ifi(c < @) { G =98; }

else if(G@ » 255) { G = 255; }

B = (int)(sumB / matrix.Factor + matrix.Offset);
if(B < @) { B =8; }

else if(B » 255) { B = 255; }

returnBitmap.setPixel(x + 1, v + 1, Color.argb(A, R, G, B));

return returnBitmap;

The 2D convolution operation requires 3 double for-loops, so it isn't extremely fast, unless

you use small filters. Here we'll usually be using 3x3 or 5x5 filters (Vandevenne, 2004).

There are a few rules about the filter:

89

Cole Pandya Btech451 End of Year Report 1506492

e The size of the kernel has to be uneven so that it has a center, for example 3x3, 5x5
and 7x7.

e If you want the brightness to be the same as the original then the sum of all elements
of the filter must be 1 but this is not compulsory as some filters affect the brightness.

e If the sum of the elements is larger than 1, the result will be a brighter image, and if
it's smaller than 1, a darker image. If the sum is 0, the resulting image isn't
necessarily completely black, but it'll be very dark.

The above code has a double field called Factor which is used as a denominator for the

kernel values.

For example a Matrix:

1/3, 1/3, 1/3

1/3, 1/3, 1/3

1/3, 1/3, 1/3

But using the Factor field, we can define the same Matrix as:
1,1,1

1,1,1

1,1,1

With Factor = 3 and Offset =0;

The above code also consists of a field called Offset which is used to add values to the RGB

after filter is applied but | have left this field 0.

90

Cole Pandya Btech451 End of Year Report 1506492

Detection of Edges - EdgeDetect.java

Using the Convolution Matrix class, | was able to design a custom edge detection filter.
Edges are significant local changes of intensity in an image and they typically occur on the
boundary between two different regions in an image. Edge Detection is used in many fields

such as image processing, machine vision, feature detection and extraction.

The main goal if edge detection filter | have implemented is to produce a line drawing of an
image so that important features can be extracted from the edges of an image (e.g., corners,
lines, curves).These features are used by higher-level computer vision algorithms (e.qg.,

recognition) (8.2 Convolution Matrix).

As shown by the example below, the result of applying edge detection to an image
sometimes leads to connected curves that indicate boundaries of objects, the boundaries of

surface markings as well as curves that correspond to discontinuities in surface orientation.

Thus, applying an edge detection algorithm to an image may significantly reduce the amount
of data to be processed and may therefore filter out information that may be regarded as
less relevant, while preserving the important structural properties of an image. In my
application, the filters can be applied on top of each other, which mean that once the user
applies Edge Detect filter, they can apply Gaussian Blur on it and then Reverse RGB. The
combination of filters such as the ones mentioned just before would return a smoothened

image.

If the edge detection step is successful, the subsequent task of interpreting the information
contents in the original image may therefore be substantially simplified. However, it is not

always possible to obtain such ideal edges from real life images of moderate complexity.

The edgeFind is a 2D double array which basically represents the 3x3 kernel | am using with
the values shown above and | create a new instance of ConvolutionMat class and pass 3 as
the size of the kernel. After that, | use the applyConfig() and pass the kernel which sets the
matrix.Matrix in the Convolution class to the
values of the kernel and carries out the
calculation. The Factor is set to 1 because there
is no denominator for this kernel and offset is set
to 0 because | do not want to modify the value

apart from the kernel (8.2 Convolution Matrix).

91

Cole Pandya Btech451 End of Year Report 1506492

Horizontal Edge Detection Filter — HorizontalEdgeDetection.java

The edge detection filter above detects both vertical and horizontal edges in an image but
what if the user wants to select only the horizontal edges? In that case, | have a kernel
below that is able to detect mostly horizontal edges of an image.

protected Bitmap filterImage(Bitmap image) {

Jfanother edge detectiocn kernel
double[][] edgeFind = new double[][]

1
{Er Er Er Er E:'r
{E) Er Er Er E:')
{'11 '11- 2} Br B‘r
{Er Er Er Er E:'r
{8, @, @, @, 0}

double[][] edgeFind = new double[][]

1
{11 E'J- _1}1
{21 8, _2}1
{1, @, -1}
b

ConvolutionMat convMatrix = new ConvolutionMat(3);
convMatrix.applyConfig(edgeFind);

convMatrix.Factor = 1;

comvMatrix.Offset = @;

return ConvolutionMat.computeConvelution(image, convMatrix);

Vertical Edge Detection — VerticalEdgeDetection.java

Similar to horizontal Edge Detection, | have also implemented a separate vertical edge
detection algorithm that uses the following kernel. | implemented vertical and horizontal as

optional features for edge detection if the user wishes to choose them separately (Rhody).

rrntected Bitmap filterImage(Bitmap image) {

double[][] edgeFind = new double[][]

{
i1, 2, 1},
i@, @, e},
{-1,-2, 1}
| H

ConvolutionMat convMatrix = new ConvolutionMat(3);
convMatrix.applyConfig(edgeFind);

convMatrix.Factor = 1;

convMatrix.0ffset = @;

return ConvolutionMat.computeConvolution(image, convMatrix);

92

Cole Pandya Btech451 End of Year Report 1506492

Emboss effect on images - Emboss.java

Using Convolution Matrix class, | create a similar class called Emboss.java. This effect
causes each pixel of an image is replaced either by a highlight or a shadow, depending on
light/dark boundaries on the original image. If there are any low contrast areas then they are
replaced by a grey background. The resulting image often results in an image resembling a
paper or metal embossing of the original image, hence the name (8.2 Convolution Matrix).

backage edit.picture.packages;
import android.graphics.Bitmap;
public class Emboss extends Filter {

protected Bitmap filterImage(Bitmap image) {
/fanother kernel

."':: ':r Er

-1, Er :r

@, 1, 1*/

{fhttp://docs.gimp.org/en/plug-in-convmatrix. html

double[][] EmbossConfig = new double[][] {
{ -2 ¥ _1: @ }:
{ -1 ¥ 1: 1 }r
i@ , 1, 2 7%

I

ConvolutionMat convMatrix = new ConvolutionMat(3);
convMatrix.applyConfig(EmbossConfig);

convMatrix.Factor = 1;

convMatrix.0ffset = @;

return ConveluticnMat.computeConvolution(image, convMatrix);

Everything is kept the same as EdgeDetect except the kernel. The emboss kernel is applied
and there are many available kernels for emboss but after a few trials | found the current one
most accurate.

93

Cole Pandya Btech451 End of Year Report 1506492

Engrave effect on images - Engrave.java

Another filter developed using the Convolution Matrix class. This filter produces an
engraving effect: the image is turned black and white and some horizontal lines of varying
height are drawn depending on the value of underlying pixels (Houston, 2011).

package edit.picture.packages;
import android.graphics.Bitmap;
public class Engrave extends Filter {

public Bitmap filterImage(Bitmap image) {

ConvolutionMat convMatrix = new ConvolutionMat(3);
convMatrix.setall(e);

convMatrix.Matrix[e][e]
convMatrix.Matrix[1][1]
convMatrix.Factor = 1;
convMatrix.Offset = 95;
return ConvolutionMat. computeConvelution({image, convMatrix);

-2
23

Noise Reduction and blur - GaussianBlur.java

This filter is slightly different to the previous ones designed using Convolution filter because
the kernel size is 5x5 and the Factor value is 273. The main purpose of this filter is to reduce
image noise and reduce minimal detail. The result image looks as if the user is viewing the
original image through a translucent screen (Gimel'farb & Delmas, Part 3: Image Processing
- 3.4. Moving Window Transform).
backage edit.picture.packages;
import android.graphics.Bitmap;
public class GaussianBlur extends Filter {
protected Bitmap filterImage(Bitmap image) {
double[][] blurGauss = new double[][] {

{1, 4, 7,4, 11,
{ 4, 16, 26, 16, 4 },
{7, 26, 41, 26, 7 },
{ 4, 16, 26, 16, 4 },
{1, 4, 7,4, 11,

s

ConvolutionMat convMatrix = new ConvolutionMat(s);
convMatrix. applyConfig(blurGauss);

convMatrix.Factor = 273;

convMatrix.0ffset = @;

return ConvolutionMat.computeConvolution(image, convMatrix);

Cole Pandya Btech451 End of Year Report 1506492

Sharpening using Laplacian kernel — Sharpen.java

Image sharpening in the field of image processing is categorized as spatial filtering is used
to reveal fine detail in an image. | am one of Laplacian kernel which highlights regions of
rapid intensity changes. The disadvantage to this filter is that if the image contains noise
then it will highlight that too and the image will be worse off than before. So this filter is only
to be used on images that are crisp in quality or with images that have been smoothened
before applying this to reduce the noise intensity. The two types of kernels that | can use for
my application are as follows (Fisher, Perkins, Ashley, & Wolfart, Laplacian/Laplacian of
Gaussian, 2003):

ol-1]0] [=1]-1]-1
_1] 4 [-1] [-1]8 -1
ol-1]0] [-1]-1]-1

I am using the kernel on the right for my application but the left one will do the job too. These
kernels are approximating a second derivative measure on the image and are extremely
sensitive to noise. Usually, it is recommend to use Gaussian blur beforehand as this reduces

high frequency noise components and then apply the sharpen effect.

package edit.pictures.packages;
import android.graphics.Bitmap;
public class Sharpen extends Filter {

protected Bitmap filterImage(Bitmap image) {
double[][] SharpConfig = new double[][] {
{ _1: _1: -1 }r
{ -1, 8, -1 }'r
{f-1, -1, -1}
I
ConvolutionMat conviMatrix = new ConveolutionMat(3);
convMatrix.applyConfig(SharpConfig);
convMatrix.Factor = 1;
conviMatrix.0ffset = @.8;
return ConvolutionMat.computeConveolution(image, convMatrix);

95

Cole Pandya Btech451 End of Year Report 1506492

Evaluation

After the completion of the project, | decided to evaluate the application using Nielson’s
Heuristics (NIELSEN, 1995) and decided to get my friends and family to be the evaluators of
the project. The reason for Nielson’s Heuristic evaluation is that it is widely known and
practiced where the Ul are often designed in a short space of time and | am on a budget so
cannot get expert evaluators. The goal of this usability evaluation is to collect feedback in
hopes to improve the application in the future. The feedback is summarised below:

Visibility of system status

Picca keeps the user informed about which screen they are navigating to by the use of
TextFields on the homescreen. Also the switch between the screens is made more obvious
by the sound of the click of the button and change in button click states. For example,
Homescreen has a gradient background whereas when the user clicks the Take Picture
button, they are directed to a camera screen with a black background and the camera

feature.

Match between system and the real world

Picca consists of camera feature that has an interface of a real camera object in smart
devices and has a reticle and a shutter effect. The user is able to capture an image when
clicking the camera screen. The application mostly consisted of buttons and Image Views so

it was really difficult to find matches between system and the real world.

User control and freedom

Picca allows users to jump to higher levels when the user wishes to modify images. For
example, the user is able to load images and then straight jump to the filter screen to apply
images. The application provides a quick and safe way to exit the application and leave the
unwanted state without having to go through an extended dialogue. The application also
provides ways to undo and redo things such as load images again, undo modification if
bitmaps using reset button and redo image capture and this allows the user has a sense of

control and freedom when using this application.

Consistency and standards

The buttons were quite consistent in design and click state colours. The features were only
displayed on the screen if they worked. The layout slightly varied as per screen size of the

device but otherwise the application was consistent and followed design standards.

96

Cole Pandya Btech451 End of Year Report 1506492

Error prevention

The application was error-prone was when the user is prompted for input and also when
loading images. For example, for brightness increase, only integer value should be accepted
or only allow numeric keys to appear on the keyboard. If the user loads the images straight
after opening the application, it crashes with a Nullpointer so that needs to be fixed.

Recognition rather than recall

This is application consists of a few screens only and barely any icons in the application. The
only one that is used is the camera switch from back to front icon and that is a common
image used for almost all devices so the user does not have to remember what the icon

means.

Flexibility and efficiency of use

Picca did not provide a lot of opportunities to tailor specific actions so that it could be
performed faster but depended on the complexity of the algorithms for the filters. However, it
did provide a way so that users can make decisions efficiently by having a RGB histogram
feature. The user would need to tap the screen to capture an image and once tapped; the
shutter effect is shown on the screen and could probably employ a quicker shutter effect to

speed up the process. Apart from that the application is flexible and efficient.

Aesthetic and minimalist design

In majority of cases, the application has only provided information where it is needed and not
overwhelmed the user. For example, user input is only shown when a button is clicked and is
only relevant to filter. The Grid View is also the same; it is only shown when the user

requests it through a button and not taken over the whole homescreen.

Help users recognize, diagnose, and recover from errors

The application does not help users recover from errors properly. For example, the user
selects an image from a location and then displays the path on the screen and it is up to the

user to diagnose whether the path is null or is not null.

Help and documentation

The application does not really need lengthy help documentation on how to operate but still it
provides more than enough information on the homescreen to operate this application
properly. It is focused on the user's task, lists concrete steps to be carried out and isn’t too
large.

97

Cole Pandya Btech451 End of Year Report 1506492

The performance of the application was not the main goal for this project but I did still
consider making it as efficient as possible while implementing the filters. | have made sure
(where possible) to not use getPixel() to get each pixel value and split it into the ARGB
format for the filter implementation. | have used the getPixels() and then used the following
way to split it to the ARGB format.

A = (pixels[index] >> 24) & OxFF;
R = (pixels[index] >> 16) & OxFF;
G = (pixels[index] >> 8) & OxFF;
B = pixels[index] & OxFF;

This way is efficient and faster to use but it is not always possible to use as it all depends on
the way the filter is implemented. For example, the Gaussian blur that | am using is from the
Compsci 373 lecture notes and consist of 5x5 kernel but there is an efficient way to
implement it using 3x3 kernel but the effect is not the same. Obviously, the 5x5 kernel is
much slower to apply but the time varies depending on the device because of the hardware

specs.

The image is saved in JPEG format after being captured and modified with the image quality
of 100%. . This application is for image restoration and enhancement and it would not be
appropriate to reduce the guality of the image because it defeats the purpose of restoration
and enhancement. | decided to leave the quality as it is because the smart devices these
days have quite a lot of internal memory and can also have external memory so the memory

space was not a big focus of this project.

The completion of this application was a major achievement because | was also enrolled in
other courses and the complexity of the application for me due to being a beginner in
Android programming. The hardest part was to get the Loadlmage buttons working because
the communication between my Android device and my laptop was failing every time |
clicked the Loadimage button. | later found out that the application was running fine but the
problem was the USB connection and that is why the application was crashing. To make this
work, | uploaded the .apk file to my Google drive and then downloaded it onto the device and
it worked fine without crashing. There are things | would like to improve on and they are

discussed in Conclusion and Future Work section.

98

Cole Pandya Btech451 End of Year Report 1506492

Conclusion and Future Work

Overall, Picca meets the project requirements and provides users with some of the common
features of desktop image processing applications with image enhancement and restoration
support. The application is able to successfully process images and also give the user an
understanding of the RGB histogram display so that it provides decision support for filter
selection. The application provides 20+ filters to user which can be applied in conjunction
with each other to achieve an optimum result. The application works well with tablets and

other Android devices as long as the screen size is over 5” and the APl is 8 and over.

For the future, | would like to focus on the performance and optimizing the layout in multiple
ways. The performance can be increased by using Android NDK which uses C/C++.The
NDK allows users to implement a part of the application using native-code languages like C
and C++. This means that | might be able to design my filters in C and this could slightly
increase the performance. The reason for this is because programming languages like java
have an additional processing overhead which affect the performance whereas C does not
but the user would need to allocate and free memory to prevent memory leaks. Optimizing
layout for larger screens should be considered for the future because as of now my
application is only designed to work for screen size of 5” or more the same way but to give
your users the best possible experience on each screen size configuration (especially for
tablets) | should optimize layouts and other user interface features for specific screen size
configuration. This means that the larger the screen size, the more space | have to add extra
features, display new material or enhance the interaction. The easiest way to start is by
changing the font size and making it dependable on the size of the screen as in my project
the same font size is kept throughout the screen. For the large and xlarge screen, | should
provide a custom layout for the application that suits that screen size configuration or | can
provide layouts that are loaded based on the screen’s shortest dimension or minimum width

or height. Also, the positioning of the user interface components should be easily accessible.

Next, | would direct my focus onto research and implementation of more filters to provide
variety of filters because the key to attract more users of the application is to provide them
with extended functionalities. To improve the human computer interaction, | think
implementing a filter gallery would be an excellent strategy to attract more users of the
application. The filter gallery will provide previews of many of the special effects of the filters
as a thumbnail instead of just the filter name. The most important aspect of improvements to
the application is to keep it unique and not generalize functionalities of other applications too

much but still be able to achieve the goals of the application.

99

Cole Pandya Btech451 End of Year Report 1506492

Reference List

(n.d.). Retrieved from Spatial Analyst: http://spatial-
analyst.net/ILWIS/htm/ilwisapp/stretch_algorithm.htm

8.2 Convolution Matrix. (n.d.). Retrieved from GIMP: http://docs.gimp.org/en/plug-in-
convmatrix.htmi

Android Architecture — The Key Concepts of Android OS. (2012, February 17).

Android Emulator. (n.d.). Retrieved from Android Developers:
http://developer.android.com/tools/help/emulator.html

Android, D. (n.d.). Building Your First App. Retrieved from
http://developer.android.com/training/basics/firstapp/index.html

Balsamiq Mock up Tool. (n.d.). Retrieved from http://www.balsamiq.com/download

Barloso, K. (2012, February 22). 10 Excellent Photo Editing Android Apps. Retrieved from
http://android.appstorm.net/roundups/photography/excellent-photo-editing-android-apps/

Bourke, P. (1993, November). A Beginners Guide to Bitmaps. Retrieved from
http://paulbourke.net/dataformats/bitmaps/

Canvas and Drawables. (n.d.). Retrieved from Android Developer:
http://developer.android.com/guide/topics/graphics/2d-graphics.html

Castleman, K. R. (1995). Digital Image Processing (2nd Edition). New Jersey: Prentice Hall.

Chanda, B., & Dutta, D. (2005). Digital image processing and analysis. New Delhi: Prentice
Hall of India.

Cheng, H., Huang, Z., & Kumimoto, M. (2006). Final Project Report — Image Processing
Techniques.

Diniy, G., Martinelliz, F., Matteucciz, I., & Petrocchiz, M. A Multi-Criteria-based Evaluation.
Pisa: Dipartimento di Ingegneria dell’ Informazione.

Efford, N. (2000). Digital Image Processing. Delhi: Pearson Education Asia.

Fisher, R., Perkins, S., Ashley, W., & Wolfart, E. (2003). Gaussian Smoothing. Retrieved
from http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

Fisher, R., Perkins, S., Ashley, W., & Wolfart, E. (2003). Laplacian/Laplacian of Gaussian.
Retrieved from http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm

Get the Android SDK. (n.d.). Retrieved from Android Developers:
http://developer.android.com/sdk/index.html

Gimel'farb, G., & Delmas, P. (n.d.). Part 3: Image Processing - 3.2. Image Filtering and
Segmentation. Retrieved from
http://www.cs.auckland.ac.nz/courses/compsci373slc/PatricesLectures/2013/CS373-I1P-
02.pdf

100

Cole Pandya Btech451 End of Year Report 1506492

Gimel'farb, G., & Delmas, P. (n.d.). Part 3: Image Processing - 3.4. Moving Window
Transform.

Gimel'farb, G., & Delmas, P. (n.d.). Part 3: Image Processing: 3.1. Digital Images and
Intensity Histograms. Retrieved from
http://www.cs.auckland.ac.nz/courses/compsci373slc/PatricesLectures/2013/CS373-1P-
01.pdf

Gonzalez, R., & Woods, R. (2007). Digital Image Processing (3rd Edition). Prentice Hall.

Gupta, S., & Abhijit, S. Image Processing Project Report - RGB IMAGE TO PENCIL
SKETCH FILTER FOR MONUMENTS.

Hoffmann, S. (2006, May 2). A PRACTICAL GUIDE TO INTERPRETING RGB
HISTOGRAMS. Retrieved from http://www.sphoto.com/techinfo/histograms/histograms.htm

Houston, P. (2011, June 22). Image Processing — Engraving Effect. Retrieved from
http://xjaphx.wordpress.com/?s=engrave

Hue, Value, Saturation. (n.d.). Retrieved from
http://learn.leighcotnoir.com/artspeak/elements-color/hue-value-saturation/

Introduction to Image Processing. (n.d.). Retrieved from
http://www.spacetelescope.org/static/projects/fits_liberator/image_processing.pdf

Jain, A. (2002). Fundamentals of digital image processing. New Delhi: Prentice Hall of India.
Java Image Filters. (n.d.). Retrieved from JH Labs: http://www.jhlabs.com/ip/filters/

Layout. (n.d.). Retrieved from Android Developers:
http://developer.android.com/guide/topics/ui/declaring-layout.html

Lucas, J. The SalsaJ software. Paris: Université Pierre et Marie Curie.

Market, A. A. (n.d.). Android Architecture — The Key Concepts of Android OS. Retrieved from
http://www.android-app-market.com/android-architecture.html

NIELSEN, J. (1995, January 1). 10 Usability Heuristics for User Interface Design. pp.
http://www.nngroup.com/articles/ten-usability-heuristics/.

Pratt, W. (2007). Digital Image Processing: PIKS Scientific Inside. Wiley-Interscience.

Rhody, H. (n.d.). Simple Gradient Calculation. Retrieved from
http://www.cis.rit.edu/people/faculty/rhody/EdgeDetection.htm

Sharma, A. (n.d). Using Surface View for Android. Retrieved from
http://mww.mindfiresolutions.com/Using-Surface-View-for-Android-1659.php

Tamada, R. (2011, July 27). Android Layouts: Linear Layout, Relative Layout and Table
Layout. Retrieved from Android Hive: http://www.androidhive.info/2011/07/android-layouts-
linear-layout-relative-layout-and-table-layout/

101

Cole Pandya Btech451 End of Year Report 1506492
Vandevenne, L. (2004). Lode's Computer Graphics Tutorial - Image Filtering. Retrieved from
http://lodev.org/cgtutor/filtering.html

ViewFinderEE368. (n.d.). Retrieved from Stanford Edu:
http://www.stanford.edu/class/ee368/Android/ViewfinderEE368/

Views. (n.d.). Retrieved from Android Developer:
http://developer.android.com/reference/android/view/View.html

102

