
Cole Pandya Btech451 End of Year Report 1506492

1

PICCA - An image processing application

for mobile devices

By

Cole Pandya

1506492

Cpan040@aucklanduni.ac.nz

mailto:Cpan040@aucklanduni.ac.nz

Cole Pandya Btech451 End of Year Report 1506492

2

Abstract

On some occasions, a user using a camera to take a picture does not have ideal conditions

to ensure optimal quality of the picture and providing a way to enhance the images would be

time efficient and cost effective. Even though there is a vast amount of “image-processing”

applications available to download, majority of them only consist of artistic effects such as

sepia or black and white etc but the essence of image restoration and enhancement is lost.

To solve this problem, I have developed Picca, which is a free image processing application

for all Android devices with a screen size of 5” or more and consists of more than 20 filters

that are not widely available in image processing application. If the users do not wish to

capture an image from the camera, they can also load an image from the device library

which are displayed as thumbnails in a grid layout and then apply filters. A bitmap is used to

the store an image in the application and the bitmap configuration used throughout the

application is called ARGB. Each pixel value of the image contains colour information and in

the ARGB bitmap configuration, the channel sample is defined by 8 bits, and are arranged in

memory in such manner that a single 32-bit unsigned integer has the Alpha sample in the

highest 8 bits, followed by the Red sample, Green sample and the Blue sample in the lowest

8 bits. Some of the filters are designed using the convolution matrix to promote reusability

and flexibility of the code. Filters like “Sharpen” must be used after an image is being

smoothened by “Gaussian blur” so that the noise does not get highlighted. The application

promotes multiple filter application on one image and this allows users to have many

permutations of the filters which result in many restoration and enhancement effects. To

support decision making for selection of filters, the application consists of a RGB histogram

feature that displays separate histograms of each colour channel to show the spread of

intensities. The application solves the issue of image restoration and image enhancement for

Android devices.

Cole Pandya Btech451 End of Year Report 1506492

3

Table of Contents
Abstract ... 2

Table of Contents .. 3

Introduction ... 6

Related Work ... 7

Research on filters and their use: .. 9

Image Equalization (Histogram Equalization) ... 9

Median Filter .. 10

Mean or Average filter .. 11

Contrast Adjustment .. 12

Gaussian Filter ... 13

Edge detection ... 14

HSV Colour space filters – Hue, Saturation and Brightness ... 15

Convolution Filter .. 16

Engrave ... 17

Flip Image .. 17

Grayscale... 17

Horizontal and vertical edge detection ... 18

Message on Image .. 18

ModColour RGB... 18

RGB Histograms feature .. 19

Other Filters ... 20

Project Overview ... 21

Project Requirements .. 22

Android App Development ... 24

Android Architecture ... 24

Linux Kernel ... 25

Libraries ... 25

Application Framework... 25

Applications ... 26

Eclipse Android SDK ... 27

AVD and the Emulator ... 28

A test user input program using Emulator .. 29

Balsamiq Mock-up Tool .. 30

Features .. 30

Cole Pandya Btech451 End of Year Report 1506492

4

Mock-ups using Balsamiq for Picca: ... 31

Revised Picca Mock-ups .. 32

Final Mock-ups for Picca .. 33

Introduction to Bitmaps .. 36

What is a Bitmap? .. 36

Some of the common types of bitmaps: ... 36

Bitmap Resolution .. 38

Picca programming work ... 39

1. AndroidManifest.xml ... 39

Introduction to Linear Layout, TextFields and Buttons .. 41

Custom buttons for my application.. 43

Background_menu.xml .. 43

Items in my Drawables-hdpi/mdpi/xhdpi folders ... 43

button_blue_red_transluscent.xml ... 44

button_white_red_transluscent.xml .. 44

button_menu.xml ... 45

button_menu_done.xml.. 45

Homescreen Layout .. 45

activity_main.xml:... 45

Camera Screen .. 50

Activity_camera.xml ... 50

Apply Filter Screen .. 51

Activity_edit_pictures.xml ... 51

Strings.xml ... 54

EditPicturesActivity.java ... 57

Different types of filters - Filter.java ... 64

Brightness Filter - BrightnessIncrease.java .. 65

Modifying Contrast - ContrastAdjust.java ... 67

Linear Stretching - ContrastStretch.java ... 69

Convert to Grayscale - GrayScale.java .. 70

Histogram Equalization Filter - HistogramEqualization.java ... 71

Drawing histogram using View - DrawHistograms.java .. 75

Previewing RGB histograms - Preview.java ... 78

Median Filter - MedianFilter.java .. 80

Camera Image flipping - FlipImage.java ... 82

Tinting Image - TintingImage.java .. 83

Cole Pandya Btech451 End of Year Report 1506492

5

Writing message on the image - MessageOnImage.java ... 83

„Inverting‟ colours - ReverseRGB.java .. 84

Saturation and Hue Filter - Saturation.java and Hue.java ... 85

Modifying RGB colour channels – ModColourRGB.java ... 87

Reusability of code - ConvolutionMat.java .. 87

Detection of Edges - EdgeDetect.java .. 91

Horizontal Edge Detection Filter – HorizontalEdgeDetection.java 92

Vertical Edge Detection – VerticalEdgeDetection.java ... 92

Emboss effect on images - Emboss.java ... 93

Engrave effect on images - Engrave.java ... 94

Noise Reduction and blur - GaussianBlur.java ... 94

Sharpening using Laplacian kernel – Sharpen.java .. 95

Evaluation .. 96

Visibility of system status ... 96

Match between system and the real world ... 96

User control and freedom ... 96

Consistency and standards .. 96

Error prevention ... 97

Recognition rather than recall .. 97

Flexibility and efficiency of use ... 97

Aesthetic and minimalist design ... 97

Help users recognize, diagnose, and recover from errors .. 97

Help and documentation .. 97

Conclusion and Future Work ... 99

Reference List ... 100

Cole Pandya Btech451 End of Year Report 1506492

6

Introduction

Mobile applications were initially developed for general productivity and retrieval of

information such as email, weather report, stock market etc. However, due to the rapid

growth of mobile technology the public demand and developer tools led to expansion of

mobile games and social applications. The popularity of mobile applications has continued to

rise, as their usage has become increasingly common across mobile phone users.

My Btech project is to develop an image processing application for Android Platform by

developing enhancement and restoration filters for the images captured or supplied by the

user. This can be achieved by mathematical algorithms that are quick and efficient but also

useful for this purpose. Providing users with popular functionalities of desktop image

processing applications would definitely be an advantage and will encourage users to use

my application. The application will be extremely usefully to users who have a basic

understanding of the RGB values and how they can analyze them to make filter choices.

The filters range from basic ones such as brightness and contrast adjustment to more

sophisticated algorithms such as Image Equalization and Convolution filter.

Image restorations filters will be used to minimize the effect of degradation. This process is

heavily dependent on the type of degradation process I use as well the quality of an image.

Image enhancement is different to this process because enhancement of image involves

more extraction of image features. This report is a guide that provides step by step process

for the development of my application and also provides detailed reasoning for filter use and

its features.

Cole Pandya Btech451 End of Year Report 1506492

7

Related Work

Image processing is common for smart devices and there are probably thousands of

applications available on Google Play for Android users to download but I still wish to

develop a free-to-download image processing application. There are many reasons for this;

the main one is that free applications like “Photo Art – Colour Effects” or “Mytubo” and many

others provide no image restoration capabilities or proper

image enhancement facilities. These types of applications only

provide „arty‟ effects which barely even enhance the detail of

the image. “Vignette Demo” is an application which provides in-

depth camera features and about 80+ filters such as Sepia,

Monochrome, and Vintage etc are widely available in majority

of applications. Having said that, they still do not enhance the

image, they are basically applying „arty‟ effects on images so

that they could be shared on social media. The reason why

they use artistic effects is because they are extremely quick to

apply whereas, the image restoration and heavy enhancement

takes slightly longer (Barloso, 2012).

“Image Processing Camera” is an Android application for $1.56NZD

https://play.google.com/store/apps/details?id=kerokawa.jp.imageprocessingcamera but only

provides around 6 basic features and is not a fully fledged image

processing application for that price. Second reason for me to

develop an image processing application is that, my application will

be free of cost but will still consist of over 20 filters that enhance or

restore images. The only downside is that the complexity of the

algorithm will determine the time to apply the filters. The performance

aspect is discussed more in the Evaluation section of this report

(Barloso, 2012).

“Photo Editor – Fotolr” is a better example of an image processing

application because of the usefulness of the filters and it consists of

features such as album function and photo sharing. The important

feature of this application is the Makeover section which basically

allows the user to remove inconsistencies of the person in the image, not the image itself.

For example, acne removal is a filter offered that basically serves as a “beauty filter” and

usually these types of filters are available only on PC applications that are not always free.

https://play.google.com/store/apps/details?id=kerokawa.jp.imageprocessingcamera

Cole Pandya Btech451 End of Year Report 1506492

8

All the applications that I mentioned above have great UI and perhaps my application may

not offer that as of now due to the time constraint but my main priority is to provide image

processing functionalities first and then worry about designing a sophisticated UI interface. I

have many mock-ups for the UI (later in the report) and the final selection is quite user-

friendly but there is always room for improvement (Barloso, 2012).

The difference between my application and the rest is the selection of filter offered. My filters

are implemented using algorithms that actually restore images or enhance them and I have

decided to implement some popular filters such as Hue, Saturation and Value/Brightness

from PC applications. I decided to leave the basic functions such as cropping etc as they are

already offered by almost all the smart devices equipped with a camera. Also, major

difference will be the RGB display feature which will help users with the decision making and

also to see the difference in distribution of intensities after applying the filters. Also I have

discussed uses of these filters later in the report.

There are thousands of image processing applications available today but most of them lack

the essence of image restoration and mostly include the artistic effects which do not serve

any purpose except sharing on social media or save to the media folder. This is where my

application will be different and also free to download to help users restore, enhance and

save images (Barloso, 2012).

Cole Pandya Btech451 End of Year Report 1506492

9

Research on filters and their use:

Image Equalization (Histogram Equalization)

This is one of the filters that I will be implementing for Picca and this is a non-linear mapping

of pixel-wise intensities in order to flatten the distribution of pixel intensities of the image

histogram. This advantages of this filter is that it will cause the dynamic range of the image

to increase which would lead to an increase in image contrast and also this filter can be

applied on images with either dark or bright backgrounds and foregrounds and can also

reveal details that are usually not shown. However, disadvantage is that this filter sometimes

outputs unrealistic images and this is dependent on the input image and therefore a user

who understands when the filter is to be used will be able to use the application efficiently

(Gimel'farb & Delmas, Part 3: Image Processing: 3.1. Digital Images and Intensity

Histograms).

As shown below, Image equalization involves mapping the initial distribution of pixel

intensities to a wider and more uniform distribution so the intensity values are spread over

the whole range. To

accomplish the equalization

effect, the remapping should

be the cumulative distribution

function (cdf) (Gimel'farb &

Delmas, Part 3: Image

Processing: 3.1. Digital

Images and Intensity

Histograms).

Cole Pandya Btech451 End of Year Report 1506492

10

Median Filter

Median filtering is a nonlinear method used to remove noise from images. The advantage of

this filter is that it is efficient and very effective at removing „salt and pepper‟ noise without

hurting the edges. The median filter works by moving through the image pixel by pixel,

replacing each value with the median value of neighbouring pixels. The pattern of

neighbours is called the "window", which slides, pixel by pixel over the entire image

(Gimel'farb & Delmas, Part 3: Image Processing - 3.2. Image Filtering and Segmentation).

The main idea of the median filter is to use current pixel intensity, replacing each entry with

the median of neighbouring entries. The „window‟ is the pattern of neighbours and it slides

through the image, over the entire image. For 1D signal (left image below), window is the

first few preceding and following entries. In my case, the signal is 2D (right image below) as

it‟s an image; more complex window patterns are possible such as "box" or "cross" patterns

(Gimel'farb & Delmas, Part 3: Image Processing - 3.2. Image Filtering and Segmentation).

2D signal algorithm:

The 2D implementation will be used to design my median filter but I plan on not to pad the

edges with specific values, strictly due to the slight loss of responsiveness. The image is

quite large and the user will not be able to notice the difference in the edges because the

median filter effect is subtle.

Cole Pandya Btech451 End of Year Report 1506492

11

Mean or Average filter

Mean filtering is another method used for „smoothing‟ images by reducing the amount of

intensity variation between neighbouring pixels. This is achieved by moving through all the

pixels, replacing each value with a mean value of neighbouring pixels. When the filter

neighbourhood straddles an edge, the filter will interpolate new values for pixels on the edge

and so will blur that edge. Disadvantage to this filter is that it could be a problem if sharp

edges are required in the output (Gimel'farb & Delmas, Part 3: Image Processing - 3.2.

Image Filtering and Segmentation).

Mean filtering is based around a kernel, which represents the shape and size of the

neighbourhood to be sampled when calculating the mean. Often a 3×3 square kernel is

used, as shown below but can use higher

square kernel for more severe smoothing.

A small kernel can be applied more than

once in order to produce a similar but not

identical effect as a single pass with a

large kernel (Gimel'farb & Delmas, Part 3:

Image Processing - 3.2. Image Filtering

and Segmentation).

The mean filter (along with many other

filters for my application) can be designed

using a Convolution matrix and all I would

be changing is the kernel matrix and the

size (8.2 Convolution Matrix).

Cole Pandya Btech451 End of Year Report 1506492

12

Contrast Adjustment

This is a basic but a quick method to alter the contrast of an image. This process is also

known as linear mapping and it involves adjusting the image by applying a constant gain a

and offset, or bias b to pixel values of an image g to form the new image f: f(x; y) = ag(x;

y) + b (Gimel'farb & Delmas, Part 3: Image Processing: 3.1. Digital Images and Intensity

Histograms).

Contrast adjustment is a process „stretching‟ pixel-wise grey values (intensities) to span a

larger range of values. This process controls the amount of contrast applied to an image and

is shown the effects of different values of ‘a’ and ‘b’.

Again, the above example is shown for a grayscale image but in my project I am dealing with

colour and grayscale images. To ensure that I am able to use this process on coloured

images, I need to process each RGB colour channel separately with this formula for the

algorithm to work and this can be seen in the programming section of this report.

Cole Pandya Btech451 End of Year Report 1506492

13

Gaussian Filter

Another filter I am going to implement in my application is called a Gaussian blur and it is

also known as Gaussian smoothing (Fisher, Perkins, Ashley, & Wolfart, Gaussian

Smoothing, 2003). As the name suggests, it blurs an image by a Gaussian function to

reduce the image noise and reduce some detail. The effect of this filter will give an effect of

viewing the image through a translucent screen or create a softly blurred version of the

original image. This algorithm then prepares the images to be used by other fuzzy effects or

can be used just to remove noise (Gimel'farb & Delmas, Part 3: Image Processing - 3.4.

Moving Window Transform) (Efford, 2000).

Mathematically the Gaussian blur is the same as convolving the image with a Gaussian

function. Also, applying a Gaussian blur has the effect of reducing the image's high-

frequency component; hence a Gaussian blur is thus a low pass filter. This is similar to mean

filter as it removes noise and blurs the image but uses a different kernel that represents the

shape of a Gaussian (`bell-shaped') hump. Then the Gaussian kernel is formed (Figure20)

and the convolution is performed by convolving into the x direction first and then y direction

after. There are many different kernels available for Gaussian blur but I decided to go with

the one from compsci373 lecture notes (Gimel'farb & Delmas, Part 3: Image Processing -

3.4. Moving Window Transform) (Cheng, Huang, & Kumimoto, 2006).

Cole Pandya Btech451 End of Year Report 1506492

14

Edge detection

I am also planning to use “Edge detection” filter for my project because it is efficient for

image smoothing to more accurate approximation of derivatives in edge detection. However,

this filter has a few downsides such as:

 It is not known for removing salt-and-pepper noise

 It is robust when it comes to averaging outliers which leads to large deviations

 In that case, median is more robust when dealing with outliers

(Gimel'farb & Delmas, Part 3: Image Processing - 3.4. Moving Window Transform) (Jain,

2002).

Cole Pandya Btech451 End of Year Report 1506492

15

HSV Colour space filters – Hue, Saturation and Brightness

If I was to include some of the popular PC application filters such as Hue, Saturation and

Brightness, I would need to understand the HSV colour space first.

To understand the HSV colour space I would need to understand what „colour‟ means first.

Colour is considered a visual by-product of the spectrum of light as it is either transmitted

through transparent medium, or as it is absorbed and reflected off a surface. So, it is the light

wavelengths that the eye receives and processes from reflected objects. The colour is made

up of 3 main integral parts: Hue, Saturation (chroma) and Value (lightness or darkness)

(Hue, Value, Saturation).

Hue is described as the dominant wavelength and is the first item we refer to when adding in

three components of a colour. This is an essential choice for a filter because it is the

dimension of colour we readily experience. In my project, the bitmaps are in ARGB

configuration and a pure hue equivalent to full saturation is determined by ratio of the

dominant wavelength to other

wavelengths in colour. Saturation is

also known as „chroma‟ and it

defines the intensity of a colour.

When Hue pigment is toned, white

and black/grey intensities are

mixed with the colour to reduce the

effects of saturation. Value refers to

the lightness and the darkness of a

colour. Dark values with black

added are called “shades” of the

given hue name and the light

values with white pigment added

are called “tints” of the hue name

(Hue, Value, Saturation). The final

project will contain these three

filters because they are extremely popular in PC image processing applications.

Cole Pandya Btech451 End of Year Report 1506492

16

Convolution Filter

I will need to reuse some of the code to design some of filters like sharpen, different types of

blurs, mean and so on. To achieve this, I will use a Convolution matrix filter which is the

treatment of a matrix by another one which is called “kernel”. The first matrix is the image

pixels and the second filter is the kernel. The kernel determines the type of filter this will be,

for example edge detection will have a different kernel to Gaussian Blur. This filter can

handle different sizes of kernels as long as they are odd (3x3 etc) (8.2 Convolution Matrix)

(Vandevenne, 2004).

The convolution filter multiplies the values of pixels by the kernel‟s corresponding value.

Then it adds the results, and the initial pixel is set to this final result value (8.2 Convolution

Matrix).

The example above has the image matrix on the left, kernel matrix in the middle and the

output matrix on the right. The image matrix has each pixel value marked and the initial pixel

has a red border. The filter reads from left to right and top to bottom.

Here is what happened: the filter read successively, from left to right and from top to bottom,

all the pixels of the kernel action area.

Process: (40*0)+(42*1)+(46*0) + (46*0)+(50*0)+(55*0) + (52*0)+(56*0)+(58*0) = 42. In the

resulting image, the initial pixel moved a pixel downwards (8.2 Convolution Matrix).

Cole Pandya Btech451 End of Year Report 1506492

17

Engrave

To get the engraving effect on images, I am using the below kernel in conjunction with the

Convolution Matrix. This gives an image an old style print look of a metal engraving. I

decided to use it with conjunction with Edge detection algorithms to highlight the effect

(Houston, 2011).

Flip Image

In the camera package, some of the devices will automatically flip the image through the

camera but if the device is not compatible then there is a need to flip the image manually.

This is quite a basic filter and shown how it is implemented in the programming part of the

report.

Grayscale

In image processing, this is a useful and common filter used in image processing

applications. This is one of the filters which I would like to include in the application even

though many applications already implement it. In digital images, these types of images

known as black and white but are made up of shades of gray. Grayscale images are often

formed as the result of measuring intensity of light at each pixel in a single band of

electromagnetic spectrum and in these cases they are monochromatic (Chanda & Dutta,

2005).

Cole Pandya Btech451 End of Year Report 1506492

18

Horizontal and vertical edge detection

Imagine a case where the user wants to select just the horizontal or vertical edges. The

problem with a fully fledged edge detection algorithm is that you cannot separate the vertical

edges from horizontal edges. Therefore, implementing different types of edge detection

filters will be the solution. There are many edge detection kernels but after trial and error I

was able to find a couple that work efficiently which I discuss later in the programming part of

the report (Rhody).

Message on Image

This is a basic filter that should only be applied at the end of image processing steps. This

filter is used to place a string at position (X, Y) on the image. Currently I have designed it so

that it places the text in the center of the image. The intent was to implement a layered filter

similar to Photoshop but that might be too complex for an Android device application.

ModColour RGB

This filter is used to change selective RGB colour channel. This is done by multiplying values

to R/G/B value of each pixel. The input is received from the user and then multiplied with the

colour channel values. So for example if the user wishes to increase Blue in an image, the

input values should be R = 1, G= 1 and B>1. The objective of this filter to reduce or increase

specific colour channels to give a monochrome effect.

Cole Pandya Btech451 End of Year Report 1506492

19

RGB Histograms feature

After some discussion with my supervisor, we came to a conclusion that my project should

include a view that will display RGB histograms separately. This is a useful feature for

someone who knows how to read and use the histograms to finalize their filter choices.

The colours (or pixel values) you see in an image are derived from varying combinations of

red, green and blue. The colour of each pixel in an RGB digital image is determined by the

value (0-255) assigned to each colour channel RGB for each pixel. In other words, each

pixel contains values for RGB and we need to separate the values to map them on the

histogram. The following provides a way to separate ARGB values from a pixel (Hoffmann,

2006):

A = (pixels [index] >> 24) & 0xFF;

R = (pixels [index] >> 16) & 0xFF;

G = (pixels [index] >> 8) & 0xFF;

B = pixels [index] & 0xFF;

The RGB colours are expressed as a numbers between 0 and 255 where the 0 represents

pure black and 255 represents pure white. Basically, the image histograms will be presented

as bar chart with the horizontal axis being the range of values (0-255) and the vertical axis

will represent the frequency of those the range of values (Hoffmann, 2006).

Imagine a scenario where the user captures an Image and clicks the RGB Histogram button

in the application and sees that there are peaks in the graphs at particular tonal range. This

means there is a high frequency of R/G/B values in that range. Depending on the distribution

of the frequency, the user can now choose to use a filter like Image Equalization etc to

reduce the effects of the peaks and this decision is made by using the histograms shown. To

assist the user even more, I include mean and standard deviation of each RGB colour value

separately just like the histograms. In Photoshop, the user can click on an area of the

histogram graph and read the intensity value from the range, for example: At R = 200, the

intensity is 5. This can be an optional addition to Picca if there is any time left at the end

(Hoffmann, 2006).

Histograms can vary depending on the RGB content of the image. A histogram of a high key

image with a majority of the content being very bright will produce a histogram that has most

of the histogram graph located from the center to the right of center. A low key image with

Cole Pandya Btech451 End of Year Report 1506492

20

lots of dark and shadow areas will produce a histogram graph that is mostly center and left

of center. Filters like increase in brightness can shift the histogram values to the right etc. To

take advantage of the RGB histogram feature, the user must apply the filter and then go

back and check the change to the histogram and then choose the next filter and so on.

Once the user has a basic understanding of at an image's histogram and figure out which

parts of the graph correspond to the different tonal ranges and components in that image.

Other Filters

In the “App Development” section of this report, I discuss about filters that I added close to

the submission date. They are explained in depth and it is easier for the reader to

understand because I have provided the source code and explained each part.

Cole Pandya Btech451 End of Year Report 1506492

21

Project Overview

My project goals are to develop an application for mobile devices that provide users with

some of the common features of desktop image processing applications and also to provide

users with image enhancement and restoration support, provided that the image is in the

condition to be restored or enhanced. Secondary goal of this application is to give users an

understanding of the RGB histograms display to check how filter algorithms affect the

distribution and how it can be used to make decisions on filter selections.

Currently, there are many Android applications that include basic image editing features

such as crop, rotate etc but not all of them are useful when the image is degraded in quality

or needs to be enhanced to reveal more detail. The user can always use a desktop

application to process images; however applications such as Photoshop are expensive to

buy and need a PC. So that being said, how can I incorporate some of the major problems of

image processing on Android devices and solve it using an Android application?

The application will need to focus on multiple problems such as digital noise, bad exposure,

blurry images, and distracting elements in our digital photos etc. The most common issue is

digital noise and this is the “grain” that we sometimes notice in film photography. There are

many types of digital noise so implementing just one filter for digital noise would not be

reliable or usable because the image quality changes because no two images are the same

(unless of course we copy) so there needs to be a few options that user can apply to get the

best possible result. Considering the scenario of different types of digital noise to use it for

other image quality issues, the types of filters needs to be researched and how they can be

used together to process the image.

The major reason for motivation was that image processing applications on Android

sometimes have limited functionalities such as just smooth filter. I want to incorporate some

of PC application features into my application. Also, I am completely new to this area of

programming and this will be my first Android application and this project will give me the

skills and knowledge to develop a complete application because I want to be a developer of

applications for mobile devices in the future.

Cole Pandya Btech451 End of Year Report 1506492

22

Project Requirements

 Picca must be an image-processing application developed for the Android devices

with screen size of 5” and over due to the layout of the application.

 Must include at least three different screens. Homescreen, Filter screen and another.

The design must be aesthetic and follow usability guidelines.

 The application must provide instructions to the user on how to use it.

 Picca must solve problems such as: digital noise, bad exposure, blurry images, and

configure colour and contrast by implementing image enhancement and restoration

filters

 Image enhancement filters must improve the quality of an image captured by the

camera or stored in the media folder by manipulating the image.

 Image restoration filters must restore corrupted/noisy image and developing a new

image from the original. Corruption may come in many forms such as motion blurs

noise etc.

 Provide common features such as Hue, Saturation and Brightness etc found in

popular desktop applications.

 The application must provide the user with variety of filters who meet the goal of

image enhancement and restoration.

 The types of filters must be approved by the supervisor.

 The images can also be loaded from a file location instead of using the camera to

capture them.

 The application must be able to restore the image back to original if the user decides

not to save the image after applying the filter.

 The application must allow filters to be applied in conjunction with each other.

 The application must provide image-selection functionality directly from the

homescreen using buttons.

 When trying to select images from a file location, they must be displayed using

GridLayout with thumbnails and sorted according to the date.

 The application must start and close without any errors. Providing an Exit button will

help close the application safely.

 The images can be saved in a JPEG due to compression benefits and quality.

 The filtered images must be saved back in the media folder without reduction in

quality (kept at 100%).

 The application must provide a display of RGB Histograms of the selected image so

that the users can make decisions based on the distribution.

Cole Pandya Btech451 End of Year Report 1506492

23

 The application must have reusability of code and must be as responsive (dependent

on the filter complexity) as possible.

Cole Pandya Btech451 End of Year Report 1506492

24

Android App Development

Android is an open source OS designed for mobile devices and has the largest share of

mobile device market. The reason of its success is because there are a lot of applications

that are available for the Android users. The applications are developed using the Standard

Development Kit (SDK) and it is a free development kit. The new version of Eclipse Android

SDK is offered as a complete download on the Eclipse website as compared to before where

it was available to download as a plug-in to Eclipse. The applications can be shared through

Google Play (also known as Android Market) and can be used by anyone. Next, I will provide

some insight on the Android Architecture (Android).

Android Architecture

The Android Architecture has made up of different layers, where each layer is a group of

program components (see image below). It includes operating system, middleware and

important applications. Each layer in the architecture provides different services to the layer

above it (Android Architecture – The Key Concepts of Android OS, 2012) (Market).

Cole Pandya Btech451 End of Year Report 1506492

25

Linux Kernel

The most basic layer is the Linux kernel and the Android Operating system is built on top of

the Linux Kernel. Linux interacts with the hardware and contains all the essential hardware

drivers. The Linux kernel also acts as an abstraction layer between the hardware and other

software layers. The memory management, process management, networking and security

settings are used by Linux as its core functionality (Android Architecture – The Key Concepts

of Android OS, 2012).

Libraries

As seen from the image, the next layer consists of Android libraries. This layer allows the

devices to handle different types of data and they are developed in C or C++ language and

specific for a particular hardware. Some of the components are as follows (Market):

Surface Manager: This component is used for combining window manager with off-screen

buffering and that means that you cannot directly draw into the screen, instead the drawings

go to the off-screen buffer (Android Architecture – The Key Concepts of Android OS, 2012).

Media framework: Media framework provides different media codec that allows playback

and recording of different media types.

SQLite: This component is the database engine used in android for data storage purposes

WebKit: This is the browser engine used to display HTML content.

OpenGL: Used to render 2D or 3D graphics content to the screen

Application Framework

The application framework manages the basic functions of phone like voice call

management; resource management etc and these are tools with which we can build our

applications (Android Architecture – The Key Concepts of Android OS, 2012).

Some important blocks of Application framework are:

Activity Manager: Manages the activity life cycle of applications

Content Providers: Manage the data sharing between applications

Telephony Manager: Manages all voice calls. We use telephony manager if we want to

access voice calls in our application.

Location Manager: Location management, using GPS or cell tower

Cole Pandya Btech451 End of Year Report 1506492

26

Resource Manager: Manage the various types of resources we use in our Application

Applications

The top layer in Android architecture is called „Applications‟ and this where developer

applications are going to settle. Several applications are installed from factory such as SMS

client app, Dialer, Web browser, Contact manager etc. This layer allows us to write an

application which can also replace any existing system application (Android Architecture –

The Key Concepts of Android OS, 2012).

Cole Pandya Btech451 End of Year Report 1506492

27

Eclipse Android SDK

Setting up SDK

To develop Android applications, I need to use the

Android Developer Tools (ADT) plug-in for

Eclipse and it provides an environment for building

Android apps. It contains the full java IDE that

would allow me to build, test and debug my

Android application. This software is free, open-

source and runs on the major OS platforms (Get

the Android SDK).

Graphical UI Builders

Android SDK contains a Graphical Layout Tool

(Figure 1.) that allows drag and drop of Android UI

components. It also allows you to visualize the UI

on Android devices and switch themes, even

platforms versions without building the code.

Develop on Hardware Devices

I can run my application on any commercial Android

hardware device or multiple devices by deploying my app to

connected devices from the IDE. It also allows me to live

debug on-device, test and profile my application.

Develop on Virtual Devices

I am using the emulator to run my application for the starting

stages such as tutorials and buttons. The Android Virtual

Device lets me define the parameters such as the device,

memory, SDK version and then save the options to use later

without redoing the process again. It includes advanced

hardware emulation and that means it includes the camera,

sensors and multi-touch functionalities. Once the complexity

of the project grew, I bought myself a couple of Android

Tablets so that it would allow me to debug application quick

and easy (Android Emulator).

Cole Pandya Btech451 End of Year Report 1506492

28

AVD and the Emulator

An interesting feature in the Android SDK is that I can configure an Android Virtual Device

(Figure 8) to create an Emulator (figure 9) to parts of my application and in this section I will

provide an in-depth explanation of how it works. The emulator feature would basically let me

prototype, develop and test my application without using a physical device.

The Android emulator (Figure 9) mimics all of the hardware and software features of a

typical mobile device, except that it cannot place actual phone calls. It still provides variety of

navigation and control keys which I am able to click (or use the keyboard for input) for

interaction with my application (Android Emulator).

It provides a variety of navigation and control keys, which you can "press" using your mouse

or keyboard to generate events for your application. It also provides a screen in which your

application is displayed, together with any other active Android applications.

I have to use Android Virtual Device configurations to create a new device to specifications I

want such as hardware aspects such as front/back camera etc. The AVD can be used to test

applications on many different device configurations. To debug my application, I can use the

console from which I log the kernel output, simulate application interrupts and simulate

latency effects.

Cole Pandya Btech451 End of Year Report 1506492

29

A test user input program using Emulator

Once I had setup the AVD properties (Note: this sample

program is in portrait mode but Picca has landscape

orientation), I decided to run a simple user input tutorial

just to check if the emulator was able to execute without

any errors. At first, the emulator takes around 3 full

minutes to load and then I later learnt that it can be run

from „snapshot‟ which significantly cuts down the time. In

this demo, I had added the „TextField and a „Search‟

button as you can see on the left. However, the time to

load is way too long and therefore from now on I will be

using the Debug mode on my Android tablet to execute

the application (Android Emulator).

Cole Pandya Btech451 End of Year Report 1506492

30

Balsamiq Mock-up Tool

After some research on mock-up tools, I have able to come across Balsamiq mock-up tool

that I can use to develop my prototype for Picca. The reason for using this software is

because it feels like the mock-up is hand-drawn, however it is a digital mock-up which allows

me to tweak and rearrange easily whenever I want (Balsamiq Mock up Tool).

Features

Low-Fi Sketch Wireframes

The mock diagrams look as if they have been sketched and appear low-fidelity wireframes

and this allows the viewer to focus on the functionality of the components.

UI Components & Icons

The version I am using has over 40 built-in UI components and over 100 icons that I can

drag and drop on the canvas.

Export to PNG or PDF

Cole Pandya Btech451 End of Year Report 1506492

31

I can also share or present mock-ups with embedded links using PDF export, or use a 3rd

party tool to export to code (Balsamiq Mock up Tool).

Mock-ups using Balsamiq for Picca:

Figure 4 displays the homescreen of Picca and this

gives the user a basic idea of the layout and function of

the application. The boxes with „crosses‟ represent

images that will be directly loaded from the user‟s media

album which allows selection without going to the media

folder every time he/she wants to edit them. Also I

decided to include a search bar at the top of the screen

so the user can retrieve an image via the name it is

saved under. Once the user clicks on an image he/she

wants to enhance or restore, they will be directed to the

screen below.

As seen by Figure 5, this is the main screen which

allows the users to apply filters on the image of their

choice after they select it from the screen above. On

the top panel are filters that I will implement and once

selected it will calculate and display the new image.

The user can then save the image if they wish or they

can click „Back‟ to apply more filters.

Cole Pandya Btech451 End of Year Report 1506492

32

Revised Picca Mock-ups

As seen by Figure 6, I decided to revise the mock-

ups and add the name of the application at the top

of the screen. I also ran the application and found

that 2 images in a row appear way too big and I

decide to add another column of images so that it

would look proportional to the screen-size.

Main changes were done to this screen (shown by

Figure 7) to increase the ease of use and overall

layout of the application. The filters will now be placed

at the bottom of the screen where the user can easily

access it without reaching all the way to the top to

change filters. The placement at the bottom also

allows a “preview” of the filter on the image and will

give more of a „thumbnail‟ effect.

Cole Pandya Btech451 End of Year Report 1506492

33

Final Mock-ups for Picca

The amount of information I wanted to display for this application means that I need a larger

screen size and this is why I bought 2 android tablets of different sizes, 5.4” screen and 9.7”

screen. I decided to use the Landscape mode for my application and the homescreen in the

revised mock-ups included a Grid View image display but to implement it in Android would

use up a lot of resources if the user wanted to capture images via the camera. So then it

would be efficient to include buttons that would load the images from a file location and then

jump straight to Step 2 to apply filters.

Cole Pandya Btech451 End of Year Report 1506492

34

The above screen shows the camera interface and it is a basic design as the user should not

be distracted with other insignificant features. If the device has a front camera, the user is

able to switch by the clicking the icon on the top left of the screen.

The mock-up above is for the screen where filters will be applied. On the left hand side, the

buttons represents different types of filters and the most common operations will be on the

ImageView such as Save, Reset, RGB Histogram etc. There has to be a vertical scroll option

for the filter buttons because I will be implementing quite a few. The above mock-ups consist

of simple design and it is kept consistent all throughout the application.

After consulting Patrice, he wanted me to have a RGB histogram feature that would display

the RGB intensities separately for the user to see. So I decided to create an initial mock-up

and can be seen below. Just providing the RGB histograms may not be enough as the user

would still want more information regarding the image and which is why I decided to include

the mean and standard deviation of RGB colour channels separately.

Cole Pandya Btech451 End of Year Report 1506492

35

Next, I need another screen to display the RGB histograms for the image selected in the

ImageView. The graphs will span the whole screen because the range is quite wide 0-255.

Cole Pandya Btech451 End of Year Report 1506492

36

Introduction to Bitmaps

What is a Bitmap?

A Bitmap is an array, or a matrix of square pixels (picture elements) arranged in columns

and rows with each pixel containing a colour value (Bourke, 1993) (Gonzalez & Woods,

2007).

The number of pixels you need to get a realistic looking image depends on the way the

image will be used. Most common uses for bitmaps are that they are used to represent

images (Introduction to Image Processing).

Some of the common types of bitmaps:

1 bit (black and white)

This type of bitmap contains the smallest possible information per pixel and this type of

bitmap is also known as monochrome or black and white. Since it only contains 1 bit, the

pixel value of 0 represents pure black and pixel value of 1 represents pure white. Below is an

example image of 1 bit bitmap (Bourke, 1993).

Cole Pandya Btech451 End of Year Report 1506492

37

Grayscale – 8 bit

In a grayscale image each pixel has an intensity that ranges from 0 to 255. By convention 0

is black and 255 white. The gray levels are the numbers in between, for example, pixel value

of 127 would be a 50% grey level. A normal greyscale image has 8 bit colour depth = 256

possible grayscale values (Bourke, 1993) (Castleman, 1995).

32 bit ARGB

In this type of bitmap, the intensity of each ARGB channel is defined by 8 bit and is arranged

in the following manner.

The Alpha colour depth is found in the highest 8 bits, followed by the Red, Green and Blue.

This implementation is used in my project to modifying each colour component separately.

Similar to this, a bitmap which contains 24 bits is known as RGB bitmap and doesn‟t contain

the alpha value. I can create a grayscale image using this type of bitmap by setting the RGB

intensity the same per pixel (Chanda & Dutta, 2005).

16 bit RGB

This type of bitmap involves the RGB components to use 5 bits each and 1 bit for alpha

(Bourke, 1993).

Cole Pandya Btech451 End of Year Report 1506492

38

Bitmap Resolution

Pixels have no explicit dimensions and therefore resolution is an attribute which is used

when viewing or printing bitmaps. Resolution can be specified in a few ways with pixels per

inch being the most common but could also be represented in any other unit of measure.

The quality of the bitmap when displayed or printed depends on the resolution. Since the

resolution determines the size of a pixel it can also be used to modify the size of the overall

image. Whenever a bitmap is displayed, the device screen resolution also needs to be

considered (Bourke, 1993).

Cole Pandya Btech451 End of Year Report 1506492

39

Picca programming work

1. AndroidManifest.xml

Description

Basically the manifest file describes the fundamental characteristics of the app and defines

each of its components. Firstly, I included the <uses-sdk> element and this it to declares

Picca‟s compatibility with other Android versions using the android:minSdkVersion and

android:targetSdkVersion attributes. For my application, I decided to set the

android:targetSdkVersion high as possible and test your app on the corresponding

platform version.

The full AndroidManifest.xml file is shown below:

Cole Pandya Btech451 End of Year Report 1506492

40

I have different intent-filters in the manifest and an intent filter basically lets the system know

which service request an activity, services or broadcast can handle.

For example, if I was coding for an image viewer, then I would add an intent filter to the

manifest describing the images I would be handling.

Cole Pandya Btech451 End of Year Report 1506492

41

Introduction to Linear Layout, TextFields and Buttons

LinearLayout

For my application, I began with creating a LinearLayout and this is a view group (a subclass

of ViewGroup) and which allows the setting of orientation.

The other two attributes that are needed to create the LinearLayout are

android:layout_width and android:layout_height, because they are required for all views

in order to specify their size.

The reason why the above attributes are set to match_parent is because the LinearLayout

should fill the entire screen area that's available to my application.

TextField

Next I decided to add a Text Field object by doing the following:

The weight value is a number that specifies the amount of remaining space each view

should consume, relative to the amount consumed by sibling views. The default weight for all

views is 0, so if you specify any weight value greater than 0 to only one view, then that view

fills whatever space remains after all views are given the space they require. So, I filled the

remaining space in my layout with the EditText element by giving it a weight of 1 and leaving

the button with no weight.

android:id: provides a unique identifier for the view, which I can use for reference when I

want to read and manipulate the object.

The „at‟ sign (@) is required when you need to refer to any resource object from XML. It is

followed by the resource type (id in this case), a slash and then the resource name

(edit_message).

Cole Pandya Btech451 End of Year Report 1506492

42

android:layout_width and android:layout_height: The wrap_content value specifies that

the view should be only as big as needed to fit the contents of the view.

Button

To add a simple button, I use the below code just to see how it works. However, in the main

project, I will be implementing custom buttons using the Drawables options to define custom

buttons.

During the mid-year break I was able to discuss more about my project with Patrice and we

believed that GridLayout should be implemented after all the other aspects of the application

are finished.

I am provided by a basic application template by Patrice and then I begin developing it to the

specifications of my application.

Cole Pandya Btech451 End of Year Report 1506492

43

Custom buttons for my application

Background_menu.xml

First I design a gradient background for the Homescreen of my application and this is

achieved by doing the following:

Basically it has a start colour and an end colour and the gradient is used as the change

between the two. To use this effect I need to use the android:background attribute and

point it to the location of the file and this is shown below.

Items in my Drawables-hdpi/mdpi/xhdpi folders

The above images will be used for the buttons during their different states of use. The

names are self explanatory as to where they are going to be used.

Cole Pandya Btech451 End of Year Report 1506492

44

button_blue_red_transluscent.xml

Next, if I wanted to place any buttons on top of the ImageView then I would need to ensure

that they are translucent. When the button is pressed it is assigned Red but when the button

is normal it is assigned Blue. Note: for both states, the colours are kept translucent.

button_white_red_transluscent.xml

Similarly to above, I have designed another .xml file that when pressed the colour is Red and

in the normal state it is kept White. Again, both the states use translucent colours.

Cole Pandya Btech451 End of Year Report 1506492

45

button_menu.xml

To select the images and assign them to the states of the buttons, I use a separate .xml file.

First to assign the state where the button is pressed, I assign the corresponding item from

the Drawables folder and the set the state_pressed as true so that it is recognised in the

above .xml files.

button_menu_done.xml

After the pressed state, I apply the done button which is blue. It is similar to the above .xml.

Homescreen Layout

activity_main.xml:

This xml file is used to produce the homescreen of the application and all the fields are

encapsulated by a RelativeLayout and this is a view group that displays child views in

relative positions of each view‟s position can be specified as relative to sibling elements

(such as to the left-of or below another view) or in positions relative to the parent

RelativeLayout area (such as aligned to the bottom, left of center) (Tamada, 2011).

RelativeLayout lets child views specify their position relative to the parent view or to each

other (specified by ID). In the template, we have used this feature for the different buttons

which would allow alignment of two elements by right border, or make one below another,

Cole Pandya Btech451 End of Year Report 1506492

46

centered in the screen, centered left, and so on. By default, all child views are drawn at the

top-left of the layout (Layout).

Some of the many layout properties available to views in a RelativeLayout include:

android:layout_alignParentTop

If "true", makes the top edge of this view match the top edge of the parent.

android:layout_centerVertical

If "true", centers this child vertically within its parent.

android:layout_below

Positions the top edge of this view below the view specified with a resource ID.

android:layout_toRightOf

Positions the left edge of this view to the right of the view specified with a resource ID.

The homescreen layout is developed by the activity_main.xml file shown below:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:background="@drawable/background_menu"

 tools:context=".MainActivity" >

 <TextView

 android:id="@+id/title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentTop="true"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="5dp"

 android:drawablePadding="10dp"

 android:gravity="bottom|center_horizontal"

 android:text="@string/app_name"

 android:textSize="100sp"

 android:textStyle="bold" />

 <TextView

Cole Pandya Btech451 End of Year Report 1506492

47

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@id/title"

 android:layout_centerHorizontal="true"

 android:layout_marginTop="5dp"

 android:gravity="top|center_horizontal"

 android:text="@string/app_subtitle"

 android:textSize="25sp"

 android:textStyle="bold" />

So I begin by adding a few TextViews and this displays text to the user and optionally allows

them to edit it, however I have disabled editing for this application. For example, one of the

TextView contains the text from Strings.xml where the field is called app_name and in this

case the value for that is Picca and we can refer to String.xml for the rest of text

allocations.

 <Button

 android:id="@+id/step1_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerVertical="true"

 android:layout_toLeftOf="@+id/arrow1"

 android:background="@android:colour/transparent"

 android:drawableBottom="@drawable/button_menu"

 android:text="@string/step1"

 android:textColour="@android:colour/secondary_text_light" />

Now I add a Button which represents a push-button widget. Push-buttons can be pressed, or

clicked, by the user to perform an action. The button includes an attribute called

android:id="@+id/step1_button" and this allows me to refer to it while I want to do

something when the button is clicked etc. The background of the button is set at

Transparent and the image of the button is loaded from Drawables folder and the images

are supplied by Patrice‟s template. The rest of the attributes are self-explanatory.

 <ImageView

 android:id="@+id/arrow1"

Cole Pandya Btech451 End of Year Report 1506492

48

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignBottom="@id/step1_button"

 android:layout_centerVertical="true"

 android:layout_toLeftOf="@+id/step2_button"

 android:paddingBottom="5dp"

 android:src="@drawable/ic_arrow" />

Since I want to have a “process-flow” appearance of the buttons, I decide to add an arrow

that points from Step 1 button to Step 2 buttons and this is done by using ImageView.

ImageView allows us to display an arbitrary image, such as the ic_arrow icon. The

ImageView class can load images from various sources as well and I used this for the

camera view as well. It can also be used in any layout manager and provides various display

options such as scaling and tinting.

 <Button

 android:id="@id/step2_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerVertical="true"

 android:layout_toLeftOf="@+id/arrow2"

 android:background="@android:colour/transparent"

 android:drawableBottom="@drawable/button_menu"

 android:text="@string/step2"

 android:textColour="@android:colour/secondary_text_light" />

Similar to Step1 button, I create a Step2 button which has the same properties as Step1

except the alignment is to the left of arrow2. Also for the rest of the fields, I have basically

applied the same principle to create “duplicates” with different placements and different Ids.

Also notice the android:drawableBottom="@drawable/button_menu" as this ensures the

colouring of the button.

 ...Similarly, the rest of the xml file is implemented. See the project folder for the full

class.

</RelativeLayout>

Cole Pandya Btech451 End of Year Report 1506492

49

In the above xml file, the images of the button is loaded from the Drawables folder which

includes all the images the template uses and are easily assigned to fields by using the

following:

 android:src="@drawable/ic_arrow"

The ic_arrow is the name of the image from the Drawables folder and we are able to assign

any images to a field as long as it is present in the Drawables folder. The android:text

attribute refers to a part of the String.xml file that consists of all strings in the project.

The graphical output of the activity_main.xml in a 5.4” device is as follows:

Cole Pandya Btech451 End of Year Report 1506492

50

Camera Screen

Activity_camera.xml

After the main screen, we need to have a camera interface where the user is able to use the

camera (Front/Back) and also see the ImageView once the user clicks the Step1 button. In

that case we need a camera activity screen and this is shown below:

The Preview represents the image that will be seen by the camera and the user is able to

capture is either using the Camera Button on the Android device or tap the screen (the

programming part is covered later). The above screen is developed using the

activity_camera.xml:

Every field in this screen is encapsulated by a FrameLayout and this layout is designed to

block out an area on the screen to display a single item such as the black areas around the

ImageView shown in the image above. Similarly to activity_main.xml, this screen consists of

ImageView, TextViews and Buttons and the images are loaded from Drawables folder.

Cole Pandya Btech451 End of Year Report 1506492

51

Apply Filter Screen

Activity_edit_pictures.xml

After capturing the pictures, the user is then directed to the screen that processes the

images and this is the major focus of the application.

This xml file is used to create multiple layouts encapsulated with many components. In this

layout, I used a LinearLayout which arranges its children in a single column or a single row.

The direction of the row can be set by calling setOrientation() and in my project, I have

used vertical. We can also specify gravity, which specifies the alignment of all the child

elements by calling setGravity() or specify that specific children grow to fill up any remaining

space in the layout by setting the weight member of LinearLayout.LayoutParams. The

default orientation is horizontal.

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:background="@android:colour/black"

 android:orientation="vertical" >

 <LinearLayout

 android:id="@+id/filter_linear_layout"

 android:layout_width="wrap_content"

 android:layout_height="fill_parent"

 android:orientation="vertical" >

 <ScrollView

 android:layout_width="wrap_content"

 android:layout_height="match_parent" >

After implementing a few buttons, the screen space had run out I had to use a scroll feature

by implementing ScrollView. It is a layout container for a view hierarchy that allows scrolling

by the user, allowing it display more information than screen space. A ScrollView is a

FrameLayout, meaning that I can only place one child in it. Therefore, to display more than

Cole Pandya Btech451 End of Year Report 1506492

52

one Button, I implemented another LinearLayout inside the ScrollView that presenting a

vertical array of top-level items such as Buttons that the user can scroll through.

I had to make sure that I did not use ScrollView with a ListView because ListView takes

care of its own vertical scrolling. Most importantly, doing this defeats all of the important

optimizations in ListView for dealing with large lists, since it effectively forces the ListView

to display its entire list of items to fill up the infinite container supplied by ScrollView

(Views).

There are other options for scrolling, however I used ScrollView because it only supports

vertical scrolling and that‟s what I needed for the buttons.

 <LinearLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:orientation="vertical" >

 <Button

 android:id="@+id/filter1_button"

 android:layout_width="fill_parent"

 android:layout_height="0dip"

 android:layout_weight="1"

 android:background="@drawable/button_white_red_transluscent"

 android:text="@string/filter1_text"

 android:textColour="@android:colour/white" />

 ...and the remaining buttons added similarly. See project files for more

details

 </LinearLayout>

 </ScrollView>

 </LinearLayout>

 <RelativeLayout

Cole Pandya Btech451 End of Year Report 1506492

53

 android:id="@+id/rel_layout"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:layout_toRightOf="@id/filter_linear_layout" >

 <ImageView

 android:id="@+id/filter_image_view"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:layout_toRightOf="@id/filter_linear_layout" />

The ImageView is where the image to be filtered is shown on and I wanted to show the

histograms of RGB values on the ImageView by click of a button and therefore I added a

button that would display RGB, save the filtered image and reset back to the original image.

 <Button

 android:id="@+id/reset_button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentBottom="true"

 android:layout_alignParentLeft="true"

 android:layout_marginLeft="22dp"

 android:background="@drawable/button_blue_red_transluscent"

 android:text="@string/Reset_text"

 android:textColour="@android:colour/white" />

...Similarly, the rest of the class is implemented. See the project folder for more

information.

 </RelativeLayout>

</RelativeLayout>

The graphical layout for the activity_edit_pictures.xml on a 5.4” screen looks as follows:

Cole Pandya Btech451 End of Year Report 1506492

54

Strings.xml

This class holds all the strings I have used in the project. To keep it organized, I have

ensured that it is divided into four parts: Main, Camera and Edit Pictures and Edit Pictures

ImageView. It just helps me keep track of strings and it is easy to go to back to when I want

to edit or add more strings for that section.

<?xml version="1.0" encoding="utf-8"?>

<resources>

 <!-- Main -->

 <string name="app_name">Picca</string>

 <string name="app_subtitle">Capture, Modify and Save - all in one.</string>

 <string name="action_settings">Settings</string>

 <string name="app_description">Option 1: Load images from location using `Load Image

1` and `Load Image 2` buttons AND Click on Step 2 button to apply filters.

Option 2: Capture images using the Front/Back camera by clicking the `Step 1` button AND

Click on `Step 2` button to apply filters.</string>

 <string name="step1">STEP 1</string>

 <string name="step1_text">Take\nPictures\n</string>

Cole Pandya Btech451 End of Year Report 1506492

55

 <string name="step2">STEP 2</string>

 <string name="step2_text">Apply Filters\n</string>

 <string name="step3">EXIT</string>

 <string name="step3_text">Finish\n</string>

 <string name="step4">LOAD\nIMAGE 1</string>

 <string name="step5">LOAD\nIMAGE 2</string>

 <!-- Camera -->

 <string name="back">Back</string>

 <string name="front">Front</string>

 <string name="tap_to_take_the_left_picture">\nTap to take\nthe first picture</string>

 <string name="tap_to_take_the_right_picture">\nTap to take\nthe second picture</string>

 <string name="info_text_right_picture">\nAlign to take\nthe second picture</string>

 <string name="picture_without_camera">A picture cannot be captured without a

camera</string>

 <string name="overlay_image_description"></string>

 <string name="no_camera_access">Can\'t access the camera.</string>

 <string name="reticle">Reticle</string>

 <string name="are_you_satisfied_pictures_text">Are you satisfied with these

pictures?</string>

 <string name="continue_text">Yes\nContinue</string>

 <string name="take_new_pictures_text">No\nTake new pictures</string>

 <!-- Edit Pictures -->

 <string name="grayscaleText">GrayScale</string>

 <string name="imageEqualizationText">Image Equalization</string>

 <string name="medianText">Median Filter</string>

 <string name="meanText">Mean Filter</string>

 <string name="contrastText">Contrast Modification</string>

 <string name="brightnessText">Brightness</string>

 <string name="reverseRGBText">Reverse RGB</string>

 <string name="gaussianText">Gaussian Filter</string>

 <string name="hEdgeDetectText">Horizontal Edge Detection</string>

 <string name="engraveText">Engrave</string>

 <string name="vEdgeDetectText">Vertical Edge Detection</string>

 <string name="smoothText">Smoothing</string>

 <string name="edgeDetectText">Edge Detection</string>

Cole Pandya Btech451 End of Year Report 1506492

56

 <string name="blackText">BLACK bitmap</string>

 <string name="colorchannelsText">Modify Colour Channels</string>

 <string name="colorIncreaseText">Increase Colour</string>

 <string name="flipImageText">Flip Image</string>

 <string name="hueText">Modify Hue</string>

 <string name="messageOnImageText">Text on Image</string>

 <string name="rotateText">Rotate 90 degrees</string>

 <string name="roundRectBorderText">Round Rectangle Border</string>

 <string name="saturationText">Saturation</string>

 <string name="shadingImageText">Shading Image</string>

 <string name="sharpenText">Sharpen</string>

 <string name="tintingImageText">Tint Image</string>

 <string name="contrastStretchText">Contrast Stretching</string>

 <!-- Edit Pictures ImageView -->

 <string name="Save_text">Save</string>

 <string name="display_RGB">RGB Histograms</string>

 <string name="Reset_text">Reset</string>

 <string name="seek_bar_text">SeekBar</string>

</resources>

Cole Pandya Btech451 End of Year Report 1506492

57

EditPicturesActivity.java

As you can see from the previous pages that the activity_edit_pictures.xml file allowed me

to add views, buttons and text fields, however those items do not have any functionalities.

First I begin with a TAG which shows up in LogCat, which basically helps when debugging

the application. Next you can see _imagespath, which is used to decode the bitmaps and

load it in the _filterImageView. In Android, to pass strings or string arrays from one activity

to another (in our case from MainActivity to this) we need to use putExtras which I will talk

about in the OnCreate(). Also I have declared 2 arrays of bitmaps; original and filtered.

The original bitmaps represents the un-modified image decoded at the start and the filtered

bitmaps represent the images modified by the filters available in the application. The size of

the Bitmap array is 2 because the camera is used to capture two images and is kept

consistent all throughout the classes. After some discussion with Patrice, we believed that

we should let the camera capture two images just in case the user does not click it properly

the first time and it only takes a second extra to capture the second image.

Next, we need to declare the types of filters to be used for my application. This is a simple

task and can be seen below. I have 20+ filters implemented and a filter called _blackFilter is

to used to test the RGB histogram feature. Once applied, the image goes pure black (RGB

= 0) and when histograms are displayed all values are at 0. Each filter implemented in the

project is explained in detail later in the report.

Cole Pandya Btech451 End of Year Report 1506492

58

Once the declarations are over, the OnCreate() needs to be overridden in which I need to

initialize the activity. Most importantly, here I will call setContentView(int) with a layout

resource defining my UI for this class, and using findViewById(int) to retrieve the widgets in

that UI. The first few lines sort out the window and layout for this class and the intent is used

to receive the _imagesPath array from the MainActivity using getStringArrayExtra().

Cole Pandya Btech451 End of Year Report 1506492

59

Once we get the _imagesPath from MainActivity we are ready to decode the bitmap which

is located at the _imagesPath. I added an If condition to check whether the path is null and

if that is the case the application will call the finish() (Note: below screenshot is not the

updated version). If the _imagesPath is not null then we can decode the bitmaps located at

the path and load them into the _originalBitmaps. The decodeFile method in my project

uses a file path to locate a bitmap. If the specified file name is null, or cannot be decoded

into a bitmap, the function returns null. The reason why I am using this method to load my

bitmaps is because it loads a „mutable’ bitmap which basically means I can modify the

contents of the bitmap.

Once the bitmap is decoded, we need to add it to the _filterImageView.

MainActivity.LEFT_IMAGE is a type integer and consists of value 1 and

MainActivity.RIGHT_IMAGE consists of integer value 2. The loop below, copies the original

bitmaps into the bitmaps that are going to be modified using filters and this copy() returns a

mutable bitmap.

After the image is added to the Image View, we can finally start adding functionalities to the

buttons. Majority of the implementations of the buttons are similar because all the

modification of the bitmap is done by extending the Filter class (discussed later in the

report).

First implementation is the GrayScale filter and this is done by creating a button and linking

it to the item on the activity_edit_pictures.xml file by using

Cole Pandya Btech451 End of Year Report 1506492

60

findViewById(R.id.grayScale_button). Once that is completed we can add the

setOnClickListener which will pass the bitmap to the filter class and this can be seen

below. Once the image is modified we need to again load that image to the Image View so

the user is able to see the modified image.

The filters that do not need user input are implemented similarly to GrayScaleFilter except

the only difference is that the Filter type is changed. I have implemented many filters that

require user to specify value(s) that would determine the degree at which the filter is applied.

Below is an example of ContrastAdjust filter which needs Gain and Bias input from the

user. To do so I have used an AlertDialog to do so and then pass those values to the Filter

class.

The Alert Dialog is pretty simple to use and is similar to requesting user input for Java but in

case the user just gets prompted in an alert window. The message to be displayed for the

user is shown below and I have also given an example of an accepted input. The user is

only able to see a keyboard that looks like below. The problem with just KEYBOARD_12Key

is that it will not let the user type a decimal point and in that case I need to set the input type

Cole Pandya Btech451 End of Year Report 1506492

61

as TEXT. After the input is entered by the user, I need split the input for Bias and Gain using

split() and parse them both.

Once that is completed, the bias and gain values are passed to another method which is

used to update the pixel values. After that the user is prompted of their user input as shown

in the below picture.

Cole Pandya Btech451 End of Year Report 1506492

62

Saving the images

Once the user has finished modifying the images using filters, the “Save” allows the user to

save the images in a folder called “Picca”. Once the button is clicked the applyFilter() is

called which uses FileOutputStream to save the images based on the image paths. Next

step is to compress the bitmap (in our case the quality is 100%) and save it in the JPEG

format and then close the stream. A similar method is used for reloading the state of the

Activity after the RGB Histogram button is clicked by the user. Once the user clicks the

RGB Histogram button, the method saves the images at a location and reloads them back

again the ImageView.

Cole Pandya Btech451 End of Year Report 1506492

63

In image processing, JPEG is a commonly used method of lossy compression. The JPEG

abbreviation stands for Joint Photographic Experts Group and there are many reasons why I

am saving images in the JPEG format. First, this format is suitable for images that contain

many continuous colours such as images captured by the camera. Photos are typically

made up of thousands of colours. The JPEG format can handle that many colours as well as

keep the file size to a minimum. The file size might not be as small as a GIF, but the size is

still pretty small compared to other formats for similar quality.

The degree of compression can be adjusted, but trying to decrease the file size will result in

loss of quality and this is why I have kept the quality at 100%.

Cole Pandya Btech451 End of Year Report 1506492

64

Different types of filters - Filter.java

To filter images with supplied input from the user, I need to pass those values as parameter

to the Filter type. To do so, I need to overload the filterImage() with different parameters

and this can be seen in the below picture:

This would allow me to create a Filter object in the EditPicturesActivity class by doing the

following:

Filter _MedianFilter = new MedianFilter();

And then I can do the following to modify the image:

_filteredBitmaps[i] = _MedianFilter.filterImage(_filteredBitmaps [i]);

This would pass the image as a parameter to the MedianFilter class which would carry out

the image processing and then return an updated image and load it back to the ImageView.

Cole Pandya Btech451 End of Year Report 1506492

65

Brightness Filter - BrightnessIncrease.java

The start of BrightnessIncrease.java class extends the Filter.java class shows that the bias

and the image are the parameters. The image passed will be the image captured by the

camera whereas the bias is an integer that will be supplied by the user (using AlertDialog

and TextField). The width and height of the image is necessary to process the current

image and create a processed image of the same size. We need a pixel array that would

store all the pixel vales of the current image. The getPixels() returns all pixels of the image

and stores it in the pixel array and this is more efficient than the getPixel() method because

you only need to call it once to get all pixel values.

After I have the width and height, I am able to create a Bitmap; however it will not contain

any pixel data. The important aspect of the createBitmap() is the configuration of the Bitmap

and in this case I have used Bitmap.Config.ARGB_8888 . The ARGB_8888 is used

because each pixel is stored on 4 bytes. Each channel (RGB and alpha or „A‟ for

translucency) is stored with 8 bits of precision (256 possible values.) This configuration is

very flexible and offers the best quality. It should be used whenever possible.

Next, I would need to span the whole image and change value of each channel on each

pixel value and to do that I need to separate the ARGB values and then add the bias to it

and then combine it back again. I was able to use the compsci373 tutorial to separate each

channel of each pixel. After separating I then added bias to the RGB value and applied a

min() function so that the value does not exceed 255.

Cole Pandya Btech451 End of Year Report 1506492

66

After changing the RGB values, the returnBitmap (the modified Bitmap) is updated with the

modified values and then returned and can be shown in ImageView.

Cole Pandya Btech451 End of Year Report 1506492

67

Modifying Contrast - ContrastAdjust.java

Contrast enhancements improve the perceptibility of objects in the images by enhancing the

brightness difference between objects and their backgrounds. The term „contrast‟ refers to

the separation between the darkest and brightest areas of the image. When the contrast is

increased, the separation between the dark and bright areas is also increased which results

in making the shadows darker and highlights brighter. Similarly, decreasing the contrast will

cause the shadows to increase and highlights to decrease.

For this filter I am using a linear contrast increase formula which involves the use of gain

and bias. This class is similar to BrightnessIncrease.java and there is a minor difference in

the algorithm and can be seen below:

This algorithm uses „gain’ and „bias’ to modify each channel value of each pixel of the

image by multiplying the value of gain to the current RGB values and then adding bias to it.

The min() function is used to make sure the values don‟t exceed 255 after modification and

then the returnBitmap is updated and returned.

Increasing contrast and brightness when not needed could also destroy the image. For

example, the distribution of RGB values of the image is already quite even but attempting to

increase the brightness or contrast may cause the values to exceed 255 (when values

exceed 255, I set them to 255) and causing them to increase the frequency of 255

Cole Pandya Btech451 End of Year Report 1506492

68

excessively. A user with some basic knowledge of histograms will be able to aid their

decision making process using my RGB histogram display feature in my project. There is

another way to modify contrast and it is known as linear stretching or contrast stretching and

it is explained in detail in the next page.

Cole Pandya Btech451 End of Year Report 1506492

69

Linear Stretching - ContrastStretch.java

Contrast stretch is another process to modify the contrast of an image. A contrast stretch

improves the brightness differences uniformly across the dynamic range of the image,

whereas tonal enhancements improve the brightness differences in the shadow (dark),

midtone (grays), or highlight (bright) regions at the expense of the brightness differences in

the other regions. This process re-distributes RGB values of an image over a wider or

narrower range of values and in my case I have decided to stretch them from 0 to 255. In my

project, I am using two types of stretch methods, linear/contrast stretching and image

equalization (Spatial Analyst).

Contrast stretching is achieved by the following formula:

When the 'stretch from‟ range is specified as values, these are INLO and INUP. These are

the values from the input image and refer to the minimums and maximum of the RGB arrays.

The OUTLO and the OUTUP values are determined by me and they represent the spread of

the new values and I have

decided to just stretch them

from 0 to 255. The OUTVAL

represent the final value after

the stretching. The below

image shows part of how I

have implemented contrast

stretch filter (Spatial Analyst):

Cole Pandya Btech451 End of Year Report 1506492

70

Convert to Grayscale - GrayScale.java

I am implementing a grayscale filter which results in an image which has colours that are

shades of gray. The reason for differentiating such images from any other sort of colour

image is that less information needs to be provided for each pixel. The gray colour is

achieved when RGB components all have the same intensity in the RGB colour space and

this basically means that we need to specify a single intensity value for each pixel as

opposed to three.

Grayscale images are common in world of imaging; however the camera feature on a device

captures the image in colour. Therefore, the user has to manually convert the image to

Grayscale using desktop applications but Picca has a grayscale filter that sets the saturation

to 0 by using the setSaturation() and a value of 0 maps the colour to gray-scale and 1 is

identity.

Cole Pandya Btech451 End of Year Report 1506492

71

Histogram Equalization Filter - HistogramEqualization.java

Histogram equalization is also referred to as Image Equalization and used on images that

looks plain and lacks contrast. This algorithm is also available in the desktop application

called Photoshop when the user clicks the “quick fix” button. My goal was to implement it on

a mobile platform so it can be used with portable android devices.

A histogram is a graph of a sort that plots the frequency at which each grey level occurs from

0 (black) to 255 (white) (in black and white images). I am familiar with this algorithm and

have implemented it for Grayscale images in one of my previous courses however, that

same algorithm would not work in my case because the camera captures images with

colour. With colour images, I need to plot the frequency of Red, Green and Blue levels of the

images. In images that have “poor contrast” (when majority of frequencies lie in the middle of

histogram), histogram equalization fixes these (Gimel'farb & Delmas, Part 3: Image

Processing: 3.1. Digital Images and Intensity Histograms).

The primary goal of this algorithm is to obtain a uniform histogram. So suppose if I capture

an image and if it has areas that have peak frequencies, even after the histogram

equalization there will still be areas with peaks but they will be shifted. In simple words, the

existing values will be mapped to new values but the actual number of intensities in the

resulting image will be equal to or less than the original number of intensities.

Histogram equalization can be done in three steps:

 compute histogram,

 calculate the normalized sum of the histogram,

 transform input image to output image

So I created a method called imageHistogram that starts off with getting each pixel value

of the image. As mentioned before in my report, each pixel value contains three colour

channels, RGB and then I increase the values of the colours in the table (Gimel'farb &

Delmas, Part 3: Image Processing: 3.1. Digital Images and Intensity Histograms).

Cole Pandya Btech451 End of Year Report 1506492

72

Next I had to calculate the normalized sum and this is the part where I had difficulty getting it

right. After researching many types of resources I was able to find a similar example to mine.

The below method calculates the cumulative distribution function which is also the images

accumulated normalized histogram. Then I call the method created before to get the

histogram. After that I created a LUT which would correspond to each colour in our RGB

channel and then I fill the table with 0‟s to calculate the scale factor. The next step would be

to go through a loop in which the value of the current pixel needs to be added to the sum.

The new value is calculated by multiplying the sum with the scale factor and similar to other

filters, if the sum exceeds 255 then 255 is used in its place (Gimel'farb & Delmas, Part 3:

Image Processing: 3.1. Digital Images and Intensity Histograms).

Cole Pandya Btech451 End of Year Report 1506492

73

Cole Pandya Btech451 End of Year Report 1506492

74

The last part that I need to do is just call the method for equalization, create a new image

and set the new pixel values. This can be achieved by the following method:

Cole Pandya Btech451 End of Year Report 1506492

75

Drawing histogram using View - DrawHistograms.java

Filter like Histogram Equalization modifies the colour values of RGB and maps them evenly.

This feature allows user to see the distribution of the RGB values as separate histograms

regardless of which filter is applied and this is an important feature because it can give an

indication to which filter the user must apply. For example, a user has captured an image

that has majority of values distributed on the left hand side of the histogram which means

that the image is dark and this could indicate a few options of filters such as Histogram

Equalization, Brightness Increase, Contrast Adjust and so on. To draw the histograms, I am

extending the View class and using onDraw() of Canvas to draw everything on the screen.

First, I need to declare the bitmap that will be used to calculate the RGB histograms and also

the Paint components which will be the colour of the font and histograms. To keep it simple I

have kept the colours of RGB histograms as red, green, and blue respectively. Also to store

the data of RGB values I need to create separate integer arrays so that the histograms have

data to be mapped. Next, I need to initialize the paint components with the colour, fill and

font size that will be drawn on the Canvas (ViewFinderEE368). The below image shows how

this is done and is self-explanatory of what is being done. The RGB histogram arrays are set

to size 256 because of the range of colour values 0-255.

Cole Pandya Btech451 End of Year Report 1506492

76

In this case, we are dealing with two colour spaces, RGB and YUV. The reason I need to

use this is because it encodes a colour image or video taking human perception into

account. This means that the bandwidth for the chrominance components is reduced

resulting in masking errors such as transmission errors or compression artifacts as

compared to the RGB format. The conversion from YUV to RGB is called

„decodeYUV420SP‟ (ViewFinderEE368) and the conversion from RGB to YUV is called

„encodeYUV420SP‟. Understanding the conversion is slightly complicated and is out of

scope for my project which is why I used pre-defined conversion methods widely available

from the internet to avoid errors in calculations and can be found in the project class (Pratt,

2007).

Cole Pandya Btech451 End of Year Report 1506492

77

Above method calculates the intensities of each colour channel and then increments the

histogram.

At the moment, you can notice that the mBitmap is kept null and the basically everything

works only if the mBitmap is kept null. This is because I will initialize the RGB data, YUV

data and the Bitmap in another class when the surface is created and as I mentioned before,

this class is used as a blueprint for the final product. I want to cover the full screen for this

feature because the histograms will be quite large and it would be difficult to get all the data

displayed in small screen space. The canvas dimensions are gathered to be used later and

also the decoding of YUV to RGB needs to be done at the start. Once that is completed the

intensities of the histograms are calculated and stored in their respective histogram arrays

and all this can be seen below (Canvas and Drawables).

The doIntensityHisto must be called thrice because of the 3 colour channels but for this to

work all the variables need to be initialized and this is done in another class which I have

included later. The next step would be to calculate the mean and standard deviation and this

is where it got tricky to implement and after a few days of researching online and it is easy to

source algorithms for mean and standard deviations. After the mean and SD calculations, I

need to display the mean and SD on the canvas for the user to see. So I use the

canvas.drawText() which takes the string, float x, float y and paint components as

parameters. This basically means that the text is drawn with the origin at (x, y), using the

specified paint and in this case it is the white font colour. Keep in mind that the background

is black. Next the intensity histograms are drawn using Rect object and that can be found in

my project folder.

Cole Pandya Btech451 End of Year Report 1506492

78

Previewing RGB histograms - Preview.java

In the last couple of pages I discussed about the blueprint of drawing histograms and to

draw the histograms I need to initialize the bitmap, RGB and YUV data arrays and so on. I

am using a class called Preview.java which extends SurfaceView and implements

SurfaceHolder.Callback. Usually SurfaceView is used with developing games but I

decided to use it with my project as it was a simple implementation without any complexity

(Sharma).

Now you will notice that the Constructor has Context as well as DrawHistograms as the

parameters and that is because I need to initialize everything here and can also use it as

shown below in my EditPicturesActivity.java class.

Next, I need to initialize everything when the surface is created and not before. Since I have

implemented SurfaceHolder interface, I have implemented a method called

surfaceCreated(SurfaceHolder) because this is called at least once when I make changes.

First I need to gather the image dimensions from the EditPicturesActivity so that I can

Cole Pandya Btech451 End of Year Report 1506492

79

declare the size of mRGBdata array and this can be seen below. Next I need to get pixel

values (and store it in the mRGBdata array) of the image I want the histograms to be drawn

for and this can get done by getPixels(). Next, I update the mBitmap in the

DrawHistograms class by the setPixels() and updating it by the values using the mRGBdata

array.

The problem I had during this process was finding the size of the YUV array and after some

research I was able to find a solution that works. The encodeYUV420SP() is also found at

the same resource http://stackoverflow.com/questions/5960247/convert-bitmap-array-to-yuv-

ycbcr-nv21. Even though all the values are updated in the Preview class, I still call invalidate

and this forces the view to draw.

http://stackoverflow.com/questions/5960247/convert-bitmap-array-to-yuv-ycbcr-nv21
http://stackoverflow.com/questions/5960247/convert-bitmap-array-to-yuv-ycbcr-nv21

Cole Pandya Btech451 End of Year Report 1506492

80

Median Filter - MedianFilter.java

I have implemented Median Filter as one of the filters used for noise reduction on the

captured image. This type of implementation is non-linear and we can use noise reduction

prior to further image processing (pre-processing) so that the end image is free of noise

when you use a filter like Edge Detection.

Basically the idea of a median filter is to iterate through the image pixels and replacing the

pixel values with the median of the neighbouring entries. This is achieved by the help of a

“window” which slides along the whole image and to keep things simple, I have used a box

pattern of window (3x3 square box window) (Vandevenne, 2004).

Just like Image Equalization, this process takes a while to filter the image as the each entry

of the image must be processed and the window slides and repeats. This brings me to Edge

Preservation during the median filtering process.

As mentioned, median filtering is already a slow process and preserving the edges would

take more processing time and therefore I decided not to process edges. This would also

yield the most accurate results as padding edges with values do tend to give inaccurate

results and also there are many padding options. With the image being so large and the

window size being only 3, I decided to not preserve edges because they would only slow

down the process and would be a feasible option only if the image was small and the

changes were visible after application. Below is the algorithm for median filtering that does

Cole Pandya Btech451 End of Year Report 1506492

81

not involve preserving the edges. The first two for loops are for iterating through each pixel

value and the other two for loops take care of the sliding window through the image. The last

part sorts the arrays of RGB values and then selects the median value (Vandevenne, 2004).

Currently, the size of the window is odd (3x3) but if in the future you change to an odd

window size such as 4x4 then there is a problem selecting the median value. In that case I

have added the following code to process even window sizes (Vandevenne, 2004).

In my project, I have added a few noise removing filters such Gaussian Blur but each filter is

applicable to certain scenarios. For small to moderate level of noise, the median filter is

demonstrably better than Gaussian blur at removing noise even with preserving edges.

However, the Gaussian blur performs better for high levels of noise but majority of times, the

image only has speckle noise or pepper noise and so median filter is recommended for that

particular instance.

Cole Pandya Btech451 End of Year Report 1506492

82

Camera Image flipping - FlipImage.java

In many cases, the camera does not flip image correctly and the image looks off. This filter

allows the user to flip the image vertically or horizontally through user input. The camera

package in my project makes sure that the image is flipped accordingly to the device but it

cannot include all devices which is why it is essential to implement this filter so that the user

can manually change the image.

The prescale() preconcats the matrix with the specified scale. M' = M * S(sx, sy) and in this

case the image is flipped vertically using the negative „y‟ value and the opposite for

horizontally using the negative „x‟ value.

Cole Pandya Btech451 End of Year Report 1506492

83

Tinting Image - TintingImage.java

While researching, I came across an interesting algorithm here:

http://www.developer.com/ws/android/programming/Working-with-Images-in-Googles-

Android-3748281-2.htm that tints images according to input level. It is difficult to understand

the complete algorithm. But basically, each pixel is tinted using an angle in degrees and after

the process is finished all the pixels are ensured to stay within the 0-255 range.

Writing message on the image - MessageOnImage.java

Sometimes, when sending images through email or other means, the only way to keep it

from copied and used in any matter, we watermark it. For my project, I have implemented a

filter that will place text on top of the captured image. I could use a design of some sort to

watermark it but it would not be useful for all applications such as sending the same image

from multiple entities as each entity would have a different watermark. Hence, some text on

the image would make it unique as well as provide control to the user as to what will appear

on the image. In many cases, the user can write a message on the same such as “The water

is leaking through this location” instead of explaining it to the party on the other end through

descriptive messages.

http://www.developer.com/ws/android/programming/Working-with-Images-in-Googles-Android-3748281-2.htm
http://www.developer.com/ws/android/programming/Working-with-Images-in-Googles-Android-3748281-2.htm

Cole Pandya Btech451 End of Year Report 1506492

84

The approach for this filter is quite different to previous filters because in this filter, we do not

need to iterate through each pixel value, instead we use the Canvas feature for Android.

First we get the image Width and Height and create the bitmap using those values. Then we

define the text size of the watermark. Then we create the bitmap on the Canvas using

drawBitmap. Once that is completed, we create a Paint object and this is used to hold the

style and colour information about the text to be displayed on the image. The position of the

text can be modified but at the moment I have kept it in the center of the image.

‘Inverting’ colours - ReverseRGB.java

Inverting colour is a feature offered by Photoshop and as the name suggests, it inverts the

values of each pixel value and its colour channel. There are a couple of uses for this filter,

one of them being making an edge mask to apply sharpening and other adjustments to

selected areas of an image and the second use is for visually impaired people who cannot

see certain detail in the image that they are able to see after applying this filter.

When you invert an image, the brightness value of each pixel in the channels is converted to

the inverse value on the 256‑step colour-values scale. For example, a pixel in a positive

image with a value of 255 is changed to 0, and a pixel with a value of 5 is changed to 250.

The algorithm can be seen below (Gimel'farb & Delmas, Part 3: Image Processing: 3.1.

Digital Images and Intensity Histograms).

Cole Pandya Btech451 End of Year Report 1506492

85

Saturation and Hue Filter - Saturation.java and Hue.java

HSV colour scale stands for Hue, Saturation and Value. Saturation is a feature available in

many desktop image processing applications and is widely used to modify images (Hue,

Value, Saturation). In my project, I will be implementing saturation algorithm using HSV

colour space. The HSV[1] will be used for saturation and HSV[0] will be used for Hue. The

pixels are converted to HSV colour space after iteration and then multiplied by the saturation

level which is basically the intensity of saturation algorithm. The level will be supplied by the

user and this is further explained in EditPicturesAcitivty.java. Once the HSV calculation is

done, the HSV is converted back to colour to store in the pixel array.

Cole Pandya Btech451 End of Year Report 1506492

86

Hue is the wavelength within the visible-light spectrum at which the energy output from a

source is greatest. In basic words, it refers to a tone of colour but it is not another name for

colour as it can have saturation and brightness as well as hue. The code is similar to

Saturation.java however, the HSV array value points to location 0 for Hue and 1 for

Saturation.

Cole Pandya Btech451 End of Year Report 1506492

87

Modifying RGB colour channels – ModColourRGB.java

This class allows each RGB values to be multiplied by a double and is a quick and

responsive filter. It has been implemented in a similar way to Brightness.java and

ContrastAdjust.java. The heart of the algorithm is shown below and the red, green and blue

values are user input through Alert Dialog.

Reusability of code - ConvolutionMat.java

After discussing this project some more with my supervisor, he believed that I should

consider some reusability of code to design new filters and after some research I was able to

find Convolution example at http://lodev.org/cgtutor/filtering.html.I have used that to create

my own Convolution Matrix algorithm that will help me design custom 2D filters. The idea is

that for every pixel of the image, take the sum of the products and each product is the colour

value of the current pixel or a neighbour of it, with the corresponding value of the filter matrix.

The center of the filter matrix has to be multiplied with the current pixel, the other elements of

the filter matrix with corresponding neighbour pixels (Vandevenne, 2004).

http://lodev.org/cgtutor/filtering.html

Cole Pandya Btech451 End of Year Report 1506492

88

If I am going to use Convolution Matrix to design many filters then I would need to make it

re-usable and this can be achieved by adding the above methods which allows the user to

set a value in a kernel matrix, set ALL values in kernel matrix and copy the kernel into the

Matrix[][] which would be used to carry out the calculations (shown later). When creating

filters, I mostly use the applyConfig() as I define the kernel in another class and I will explain

this later with source code of a filter designed using Convolution Matrix (Vandevenne, 2004).

The filters I am using with convolution are quite simple and majority of them use 3x3 kernel

but creating complex filters such as Coloured Pencil in Photoshop are also possible but they

are not included in this project.

Cole Pandya Btech451 End of Year Report 1506492

89

The 2D convolution operation requires 3 double for-loops, so it isn't extremely fast, unless

you use small filters. Here we'll usually be using 3x3 or 5x5 filters (Vandevenne, 2004).

There are a few rules about the filter:

Cole Pandya Btech451 End of Year Report 1506492

90

 The size of the kernel has to be uneven so that it has a center, for example 3x3, 5x5

and 7x7.

 If you want the brightness to be the same as the original then the sum of all elements

of the filter must be 1 but this is not compulsory as some filters affect the brightness.

 If the sum of the elements is larger than 1, the result will be a brighter image, and if

it's smaller than 1, a darker image. If the sum is 0, the resulting image isn't

necessarily completely black, but it'll be very dark.

The above code has a double field called Factor which is used as a denominator for the

kernel values.

For example a Matrix:

1/3, 1/3, 1/3

1/3, 1/3, 1/3

1/3, 1/3, 1/3

But using the Factor field, we can define the same Matrix as:

1, 1, 1

1, 1, 1

1, 1, 1

With Factor = 3 and Offset =0;

The above code also consists of a field called Offset which is used to add values to the RGB

after filter is applied but I have left this field 0.

Cole Pandya Btech451 End of Year Report 1506492

91

Detection of Edges - EdgeDetect.java

Using the Convolution Matrix class, I was able to design a custom edge detection filter.

Edges are significant local changes of intensity in an image and they typically occur on the

boundary between two different regions in an image. Edge Detection is used in many fields

such as image processing, machine vision, feature detection and extraction.

The main goal if edge detection filter I have implemented is to produce a line drawing of an

image so that important features can be extracted from the edges of an image (e.g., corners,

lines, curves).These features are used by higher-level computer vision algorithms (e.g.,

recognition) (8.2 Convolution Matrix).

As shown by the example below, the result of applying edge detection to an image

sometimes leads to connected curves that indicate boundaries of objects, the boundaries of

surface markings as well as curves that correspond to discontinuities in surface orientation.

Thus, applying an edge detection algorithm to an image may significantly reduce the amount

of data to be processed and may therefore filter out information that may be regarded as

less relevant, while preserving the important structural properties of an image. In my

application, the filters can be applied on top of each other, which mean that once the user

applies Edge Detect filter, they can apply Gaussian Blur on it and then Reverse RGB. The

combination of filters such as the ones mentioned just before would return a smoothened

image.

 If the edge detection step is successful, the subsequent task of interpreting the information

contents in the original image may therefore be substantially simplified. However, it is not

always possible to obtain such ideal edges from real life images of moderate complexity.

The edgeFind is a 2D double array which basically represents the 3x3 kernel I am using with

the values shown above and I create a new instance of ConvolutionMat class and pass 3 as

the size of the kernel. After that, I use the applyConfig() and pass the kernel which sets the

matrix.Matrix in the Convolution class to the

values of the kernel and carries out the

calculation. The Factor is set to 1 because there

is no denominator for this kernel and offset is set

to 0 because I do not want to modify the value

apart from the kernel (8.2 Convolution Matrix).

Cole Pandya Btech451 End of Year Report 1506492

92

Horizontal Edge Detection Filter – HorizontalEdgeDetection.java

The edge detection filter above detects both vertical and horizontal edges in an image but

what if the user wants to select only the horizontal edges? In that case, I have a kernel

below that is able to detect mostly horizontal edges of an image.

Vertical Edge Detection – VerticalEdgeDetection.java

Similar to horizontal Edge Detection, I have also implemented a separate vertical edge

detection algorithm that uses the following kernel. I implemented vertical and horizontal as

optional features for edge detection if the user wishes to choose them separately (Rhody).

Cole Pandya Btech451 End of Year Report 1506492

93

Emboss effect on images - Emboss.java

Using Convolution Matrix class, I create a similar class called Emboss.java. This effect

causes each pixel of an image is replaced either by a highlight or a shadow, depending on

light/dark boundaries on the original image. If there are any low contrast areas then they are

replaced by a grey background. The resulting image often results in an image resembling a

paper or metal embossing of the original image, hence the name (8.2 Convolution Matrix).

Everything is kept the same as EdgeDetect except the kernel. The emboss kernel is applied

and there are many available kernels for emboss but after a few trials I found the current one

most accurate.

Cole Pandya Btech451 End of Year Report 1506492

94

Engrave effect on images - Engrave.java

Another filter developed using the Convolution Matrix class. This filter produces an

engraving effect: the image is turned black and white and some horizontal lines of varying

height are drawn depending on the value of underlying pixels (Houston, 2011).

Noise Reduction and blur - GaussianBlur.java

This filter is slightly different to the previous ones designed using Convolution filter because

the kernel size is 5x5 and the Factor value is 273. The main purpose of this filter is to reduce

image noise and reduce minimal detail. The result image looks as if the user is viewing the

original image through a translucent screen (Gimel'farb & Delmas, Part 3: Image Processing

- 3.4. Moving Window Transform).

Cole Pandya Btech451 End of Year Report 1506492

95

Sharpening using Laplacian kernel – Sharpen.java

Image sharpening in the field of image processing is categorized as spatial filtering is used

to reveal fine detail in an image. I am one of Laplacian kernel which highlights regions of

rapid intensity changes. The disadvantage to this filter is that if the image contains noise

then it will highlight that too and the image will be worse off than before. So this filter is only

to be used on images that are crisp in quality or with images that have been smoothened

before applying this to reduce the noise intensity. The two types of kernels that I can use for

my application are as follows (Fisher, Perkins, Ashley, & Wolfart, Laplacian/Laplacian of

Gaussian, 2003):

I am using the kernel on the right for my application but the left one will do the job too. These

kernels are approximating a second derivative measure on the image and are extremely

sensitive to noise. Usually, it is recommend to use Gaussian blur beforehand as this reduces

high frequency noise components and then apply the sharpen effect.

Cole Pandya Btech451 End of Year Report 1506492

96

Evaluation

After the completion of the project, I decided to evaluate the application using Nielson‟s

Heuristics (NIELSEN, 1995) and decided to get my friends and family to be the evaluators of

the project. The reason for Nielson‟s Heuristic evaluation is that it is widely known and

practiced where the UI are often designed in a short space of time and I am on a budget so

cannot get expert evaluators. The goal of this usability evaluation is to collect feedback in

hopes to improve the application in the future. The feedback is summarised below:

Visibility of system status

Picca keeps the user informed about which screen they are navigating to by the use of

TextFields on the homescreen. Also the switch between the screens is made more obvious

by the sound of the click of the button and change in button click states. For example,

Homescreen has a gradient background whereas when the user clicks the Take Picture

button, they are directed to a camera screen with a black background and the camera

feature.

Match between system and the real world

Picca consists of camera feature that has an interface of a real camera object in smart

devices and has a reticle and a shutter effect. The user is able to capture an image when

clicking the camera screen. The application mostly consisted of buttons and Image Views so

it was really difficult to find matches between system and the real world.

User control and freedom

Picca allows users to jump to higher levels when the user wishes to modify images. For

example, the user is able to load images and then straight jump to the filter screen to apply

images. The application provides a quick and safe way to exit the application and leave the

unwanted state without having to go through an extended dialogue. The application also

provides ways to undo and redo things such as load images again, undo modification if

bitmaps using reset button and redo image capture and this allows the user has a sense of

control and freedom when using this application.

Consistency and standards

The buttons were quite consistent in design and click state colours. The features were only

displayed on the screen if they worked. The layout slightly varied as per screen size of the

device but otherwise the application was consistent and followed design standards.

Cole Pandya Btech451 End of Year Report 1506492

97

Error prevention

The application was error-prone was when the user is prompted for input and also when

loading images. For example, for brightness increase, only integer value should be accepted

or only allow numeric keys to appear on the keyboard. If the user loads the images straight

after opening the application, it crashes with a Nullpointer so that needs to be fixed.

Recognition rather than recall

This is application consists of a few screens only and barely any icons in the application. The

only one that is used is the camera switch from back to front icon and that is a common

image used for almost all devices so the user does not have to remember what the icon

means.

Flexibility and efficiency of use

Picca did not provide a lot of opportunities to tailor specific actions so that it could be

performed faster but depended on the complexity of the algorithms for the filters. However, it

did provide a way so that users can make decisions efficiently by having a RGB histogram

feature. The user would need to tap the screen to capture an image and once tapped; the

shutter effect is shown on the screen and could probably employ a quicker shutter effect to

speed up the process. Apart from that the application is flexible and efficient.

Aesthetic and minimalist design

In majority of cases, the application has only provided information where it is needed and not

overwhelmed the user. For example, user input is only shown when a button is clicked and is

only relevant to filter. The Grid View is also the same; it is only shown when the user

requests it through a button and not taken over the whole homescreen.

Help users recognize, diagnose, and recover from errors

The application does not help users recover from errors properly. For example, the user

selects an image from a location and then displays the path on the screen and it is up to the

user to diagnose whether the path is null or is not null.

Help and documentation

The application does not really need lengthy help documentation on how to operate but still it

provides more than enough information on the homescreen to operate this application

properly. It is focused on the user's task, lists concrete steps to be carried out and isn‟t too

large.

Cole Pandya Btech451 End of Year Report 1506492

98

The performance of the application was not the main goal for this project but I did still

consider making it as efficient as possible while implementing the filters. I have made sure

(where possible) to not use getPixel() to get each pixel value and split it into the ARGB

format for the filter implementation. I have used the getPixels() and then used the following

way to split it to the ARGB format.

A = (pixels[index] >> 24) & 0xFF;

R = (pixels[index] >> 16) & 0xFF;

G = (pixels[index] >> 8) & 0xFF;

B = pixels[index] & 0xFF;

This way is efficient and faster to use but it is not always possible to use as it all depends on

the way the filter is implemented. For example, the Gaussian blur that I am using is from the

Compsci 373 lecture notes and consist of 5x5 kernel but there is an efficient way to

implement it using 3x3 kernel but the effect is not the same. Obviously, the 5x5 kernel is

much slower to apply but the time varies depending on the device because of the hardware

specs.

The image is saved in JPEG format after being captured and modified with the image quality

of 100%. . This application is for image restoration and enhancement and it would not be

appropriate to reduce the quality of the image because it defeats the purpose of restoration

and enhancement. I decided to leave the quality as it is because the smart devices these

days have quite a lot of internal memory and can also have external memory so the memory

space was not a big focus of this project.

The completion of this application was a major achievement because I was also enrolled in

other courses and the complexity of the application for me due to being a beginner in

Android programming. The hardest part was to get the LoadImage buttons working because

the communication between my Android device and my laptop was failing every time I

clicked the LoadImage button. I later found out that the application was running fine but the

problem was the USB connection and that is why the application was crashing. To make this

work, I uploaded the .apk file to my Google drive and then downloaded it onto the device and

it worked fine without crashing. There are things I would like to improve on and they are

discussed in Conclusion and Future Work section.

Cole Pandya Btech451 End of Year Report 1506492

99

Conclusion and Future Work

Overall, Picca meets the project requirements and provides users with some of the common

features of desktop image processing applications with image enhancement and restoration

support. The application is able to successfully process images and also give the user an

understanding of the RGB histogram display so that it provides decision support for filter

selection. The application provides 20+ filters to user which can be applied in conjunction

with each other to achieve an optimum result. The application works well with tablets and

other Android devices as long as the screen size is over 5” and the API is 8 and over.

For the future, I would like to focus on the performance and optimizing the layout in multiple

ways. The performance can be increased by using Android NDK which uses C/C++.The

NDK allows users to implement a part of the application using native-code languages like C

and C++. This means that I might be able to design my filters in C and this could slightly

increase the performance. The reason for this is because programming languages like java

have an additional processing overhead which affect the performance whereas C does not

but the user would need to allocate and free memory to prevent memory leaks. Optimizing

layout for larger screens should be considered for the future because as of now my

application is only designed to work for screen size of 5” or more the same way but to give

your users the best possible experience on each screen size configuration (especially for

tablets) I should optimize layouts and other user interface features for specific screen size

configuration. This means that the larger the screen size, the more space I have to add extra

features, display new material or enhance the interaction. The easiest way to start is by

changing the font size and making it dependable on the size of the screen as in my project

the same font size is kept throughout the screen. For the large and xlarge screen, I should

provide a custom layout for the application that suits that screen size configuration or I can

provide layouts that are loaded based on the screen‟s shortest dimension or minimum width

or height. Also, the positioning of the user interface components should be easily accessible.

Next, I would direct my focus onto research and implementation of more filters to provide

variety of filters because the key to attract more users of the application is to provide them

with extended functionalities. To improve the human computer interaction, I think

implementing a filter gallery would be an excellent strategy to attract more users of the

application. The filter gallery will provide previews of many of the special effects of the filters

as a thumbnail instead of just the filter name. The most important aspect of improvements to

the application is to keep it unique and not generalize functionalities of other applications too

much but still be able to achieve the goals of the application.

Cole Pandya Btech451 End of Year Report 1506492

100

Reference List
(n.d.). Retrieved from Spatial Analyst: http://spatial-

analyst.net/ILWIS/htm/ilwisapp/stretch_algorithm.htm

8.2 Convolution Matrix. (n.d.). Retrieved from GIMP: http://docs.gimp.org/en/plug-in-

convmatrix.html

Android Architecture – The Key Concepts of Android OS. (2012, February 17).

Android Emulator. (n.d.). Retrieved from Android Developers:

http://developer.android.com/tools/help/emulator.html

Android, D. (n.d.). Building Your First App. Retrieved from

http://developer.android.com/training/basics/firstapp/index.html

Balsamiq Mock up Tool. (n.d.). Retrieved from http://www.balsamiq.com/download

Barloso, K. (2012, February 22). 10 Excellent Photo Editing Android Apps. Retrieved from

http://android.appstorm.net/roundups/photography/excellent-photo-editing-android-apps/

Bourke, P. (1993, November). A Beginners Guide to Bitmaps. Retrieved from

http://paulbourke.net/dataformats/bitmaps/

Canvas and Drawables. (n.d.). Retrieved from Android Developer:

http://developer.android.com/guide/topics/graphics/2d-graphics.html

Castleman, K. R. (1995). Digital Image Processing (2nd Edition). New Jersey: Prentice Hall.

Chanda, B., & Dutta, D. (2005). Digital image processing and analysis. New Delhi: Prentice

Hall of India.

Cheng, H., Huang, Z., & Kumimoto, M. (2006). Final Project Report – Image Processing

Techniques.

Diniy, G., Martinelliz, F., Matteucciz, I., & Petrocchiz, M. A Multi-Criteria-based Evaluation.

Pisa: Dipartimento di Ingegneria dell‟ Informazione.

Efford, N. (2000). Digital Image Processing. Delhi: Pearson Education Asia.

Fisher, R., Perkins, S., Ashley, W., & Wolfart, E. (2003). Gaussian Smoothing. Retrieved

from http://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

Fisher, R., Perkins, S., Ashley, W., & Wolfart, E. (2003). Laplacian/Laplacian of Gaussian.

Retrieved from http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm

Get the Android SDK. (n.d.). Retrieved from Android Developers:

http://developer.android.com/sdk/index.html

Gimel'farb, G., & Delmas, P. (n.d.). Part 3: Image Processing - 3.2. Image Filtering and

Segmentation. Retrieved from

http://www.cs.auckland.ac.nz/courses/compsci373s1c/PatricesLectures/2013/CS373-IP-

02.pdf

Cole Pandya Btech451 End of Year Report 1506492

101

Gimel'farb, G., & Delmas, P. (n.d.). Part 3: Image Processing - 3.4. Moving Window

Transform.

Gimel'farb, G., & Delmas, P. (n.d.). Part 3: Image Processing: 3.1. Digital Images and

Intensity Histograms. Retrieved from

http://www.cs.auckland.ac.nz/courses/compsci373s1c/PatricesLectures/2013/CS373-IP-

01.pdf

Gonzalez, R., & Woods, R. (2007). Digital Image Processing (3rd Edition). Prentice Hall.

Gupta, S., & Abhijit, S. Image Processing Project Report - RGB IMAGE TO PENCIL

SKETCH FILTER FOR MONUMENTS.

Hoffmann, S. (2006, May 2). A PRACTICAL GUIDE TO INTERPRETING RGB

HISTOGRAMS. Retrieved from http://www.sphoto.com/techinfo/histograms/histograms.htm

Houston, P. (2011, June 22). Image Processing – Engraving Effect. Retrieved from

http://xjaphx.wordpress.com/?s=engrave

Hue, Value, Saturation. (n.d.). Retrieved from

http://learn.leighcotnoir.com/artspeak/elements-color/hue-value-saturation/

Introduction to Image Processing. (n.d.). Retrieved from

http://www.spacetelescope.org/static/projects/fits_liberator/image_processing.pdf

Jain, A. (2002). Fundamentals of digital image processing. New Delhi: Prentice Hall of India.

Java Image Filters. (n.d.). Retrieved from JH Labs: http://www.jhlabs.com/ip/filters/

Layout. (n.d.). Retrieved from Android Developers:

http://developer.android.com/guide/topics/ui/declaring-layout.html

Lucas, J. The SalsaJ software. Paris: Université Pierre et Marie Curie.

Market, A. A. (n.d.). Android Architecture – The Key Concepts of Android OS. Retrieved from

http://www.android-app-market.com/android-architecture.html

NIELSEN, J. (1995, January 1). 10 Usability Heuristics for User Interface Design. pp.

http://www.nngroup.com/articles/ten-usability-heuristics/.

Pratt, W. (2007). Digital Image Processing: PIKS Scientific Inside. Wiley-Interscience.

Rhody, H. (n.d.). Simple Gradient Calculation. Retrieved from

http://www.cis.rit.edu/people/faculty/rhody/EdgeDetection.htm

Sharma, A. (n.d.). Using Surface View for Android. Retrieved from

http://www.mindfiresolutions.com/Using-Surface-View-for-Android-1659.php

Tamada, R. (2011, July 27). Android Layouts: Linear Layout, Relative Layout and Table

Layout. Retrieved from Android Hive: http://www.androidhive.info/2011/07/android-layouts-

linear-layout-relative-layout-and-table-layout/

Cole Pandya Btech451 End of Year Report 1506492

102

Vandevenne, L. (2004). Lode's Computer Graphics Tutorial - Image Filtering. Retrieved from

http://lodev.org/cgtutor/filtering.html

ViewFinderEE368. (n.d.). Retrieved from Stanford Edu:

http://www.stanford.edu/class/ee368/Android/ViewfinderEE368/

Views. (n.d.). Retrieved from Android Developer:

http://developer.android.com/reference/android/view/View.html

